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Foreword

These proceedings contain the papers selected for presentation at the workshop
Library-Centric Software Design (LCSD’05), held on October 16, 2005 in San
Diego, California, USA, as part of the yearly ACM Object Oriented Program-
ming, Systems, Languages and Applications (OOPSLA) conference. This was
the first Library-Centric Software Design workshop, and we are pleased that the
interest in the workshop was so high.

Software libraries are central to all major scientific, engineering, and business
areas, yet the design, implementation, and use of libraries are underdeveloped
arts. The goal of the Library-Centric Software Design workshop therefore is to
place the various aspects of libraries on a sound technical and scientific basis.
To that end, we welcome both research into fundamental issues and the docu-
mentation of best practices.

We received 15 papers and were able to select 7 technical papers and 6 posi-
tion papers. These papers cover a wide range of activities, including theoretical
as well as practical questions, along with applications in different languages and
paradigms. All papers were reviewed for soundness and relevance by at least
three, and in most cases four reviewers. We would like to take this opportunity
to thank the program committee for their very thorough reviews, which went far
beyond “the usual.”

In addition to the paper presentations, the workshop organized a keynote
talk, given by Joshua Bloch (Google), and a Birds-of-a-Feather (BOF) session for
the discussion of strategic questions. Thirty-two people attended the workshop,
and about fifteen the BOF session, from which emerged initial planning for
LCSD’06, which will take place Oct. 22, 2006 at OOPSLA in Portland, Oregon.

The idea for a workshop on Library-Centric Software Design was born at the
Dagstuhl meeting Software Libraries: Design and Evaluation in March 2005.
We thank the participants of this meeting for encouraging and nurturing the
workshop idea from the beginning; in particular Frank Tip and Bjarne Stroustrup
were instrumental in making the LCSD workshop happen. Bjarne initiated, and
wrote, the Call for Papers for the workshop.

We would like to thank all authors, reviewers, and the organizing committee
for their work in bringing about the LCSD workshop. We are very grateful to
David Musser (for serving as the General Chair), Jaakko Jérvi (for maintaining
the webpage), Dong Inn Kim and the Open Systems Lab at Indiana University
(for setting up CyberChair and managing the submissions), and David Musser
and Jeremy Siek (for preparing the technical report). We also thank Bill Opdyke
and the OOPSLA workshop organizers for the help we received.

We hope you find the papers rewarding and stimulating.

Andrew Lumsdaine
Sibylle Schupp
Program Co-Chairs
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What is Generic Programming?

Gabriel Dos Reis
Department of Computer Science
Texas A&M University
College Station, TX-77843

gdr@cs.tamu.edu

Abstract

The last two decades have seen an ever-growing interest in generic
programming. As for most programming paradigms, there are sev-
eral definitions of generic programming in use. In the simplest
view generic programming is equated to a set of language mech-
anisms for implementing type-safe polymorphic containers, such
as List<T> in Java. The notion of generic programming that moti-
vated the design of the Standard Template Library (STL) advocates
a broader definition: a programming paradigm for designing and
developing reusable and efficient collections of algorithms. The
functional programming community uses the term as a synonym for
polytypic and type-indexed programming, which involves design-
ing functions that operate on data-types having certain algebraic
structures. This paper aims at analyzing core mathematical notions
at the foundations of rational approaches to generic programming
and library design as reasoned and principled activity. We relate
several methodologies used and studied in the imperative and func-
tional programming communities. As a necessary step, we pro-
vide a base for common understanding of techniques underpinning
generic software components and libraries, and their construction,
not limited to a particular linguistic support.

1 Introduction

The notion of “generic programming” has been in use for about
four decades, popularized in the *60s with the LISP programming
language and its descendents [McC60, ASS84] providing direct
support for higher-order functions. Since then, programming tech-
niques and linguistic support for defining algorithms that are ca-
pable of operating over a wide range of data structures have been
subjects of a large body of work. The notion of polymorphism
appears to be an essential ingredient of generic programming. In
1967, Christopher Strachey proposed a classification of polymor-
phism [Str67], based on the linguistic supports present in program-
ming languages. Luca Cardelli and Peter Wegner later refined that
classification [CW85], accounting for new language constructs.

Curiously, language features for writing some classes of polymor-
phic functions and data structures have received more attention
than sound programming techniques at the foundation of generic
libraries. In fact, generic programming (as usual with successful
programming paradigms) is often equated with language features.
It is not uncommon to see definitions of “generic programming”
that are more or less crafted to mean what the specific programming
languages under consideration support [BJJIM99]. Similarly, much
of the conventions and practice of generic programming in the con-
text of C++ [ISO03, Str00] is shaped by the template system of C++.
It is thus difficult to objectively define generic programming with-
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Department of Computer Science
Texas A&M University
College Station, TX-77843
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out a bias to a particular programming language over others. But if
we want to think of generic programming as a principled, reasoned
activity, such a language independent understanding is necessary.
Consequently, this paper will not focus on language features as the
subject of study. The reader interested in a comparison of main-
stream programming language features for generic programming is
referred to the report of Ronald Garcia et al. [GILT03]. To avoid
being lost in the twists and turns of the “empty set theory” we illus-
trate our ideas and claims with extensive examples written in con-
crete programming languages, in particular, C++ [ISO03, Str00],
Haskell [PJO3], and Scheme [RSR98]. The list of programming
languages used in this paper is kept short to avoid distraction. Of
course, we hope that the reader would translate or re-express our
examples in his or her own favorite programming languages.

Our long term goal is to develop useful theories of generic pro-
gramming, to better understand and advance the practice of generic
programming as a principled activity. This paper reports work in
progress along this path, starting from analyzing and relating sev-
eral notions of generic programming.

It is good to have theories that clarify practice. Good theories, how-
ever, are not those that simply rehash common knowledge. Good
theories help predict and conquer unexplained and/or unexplored
territories. For example, Newton’s theory of gravitation was good
because it clarified practices and beliefs of the time but also helped
predict eclipses within reasonable precision. The theories of rel-
ativity developed by Einstein were good because they explained
facts that left physicists perplexed, and took up where Newton’s
theory was defeated in predictions. From empirical sciences, one
can observe that useful theories are falsifiable. That is, they can be
confronted with hard data from the world. Similarly, we posit that
useful theories that help gain better understanding of generic pro-
gramming should be confronted with practices from the real world.
The theories are not the goals in themselves, they are means by
which we seek to have better understanding. Also, care must be ex-
ercised so as not to confuse theories with realities in interpretations.

As its main contribution, this paper shows how different approaches
to generic programming can be explained within the same mathe-
matical framework, leaning on category theory. We note that the
connection between category theory and generic programming in
functional programming languages has been well established —
many generic algorithms draw their motivation from categorial no-
tions. A novelty of this paper is the establishment of similar connec-
tions for generic programming approach as pioneered by Alexander
Stepanov, David Musser and their collaborators (at the foundation
of the STL), which arises largely from a practical perspective of
organizing generic software components for increased reusability.



The latter approach builds on low level language features — driven
by efficiency considerations — much more so than the other ap-
proaches to generic programming. As a result, however, proving
properties of and reasoning about STL generic algorithms is diffi-
cult. We believe a stronger connection to a formal model of generic
programming will aid in this respect, guiding the development of
generic libraries, and program manipulation tools for them.

2 Background

Generic programming has been approached from various angles
in both the functional programming and imperative programming
communities. We identify two main schools of thought:

1. the “gradual lifting of concrete algorithms” discipline as first
described by David Musser, Alexander Stepanov, Deepak Ka-
pur and collaborators;

2. a calculational approach to programming, the foundations of
which were laid by Richard Bird and Lambert Meertens.

The first school defines the discipline of generic programming es-
sentially as follows: start with a practical, useful, algorithm and
repeatedly abstract over details; at any stage of the gradual abstrac-
tion, the “generic” version of the algorithm shall be such that when
instantiated it shall match the original algorithm both in seman-
tics and efficiency. The gradual lifting stops when these conditions
cease to hold. Quoting Musser and Stepanov [MS88]:

By generic programming, we mean the definition of al-
gorithms and data structures at an abstract or generic
level, thereby accomplishing many related programming
tasks simultaneously. The central notion is that of
generic algorithms, which are parameterized procedural
schemata that are completely independent of the under-
lying data representation and are derived from concrete
efficient algorithms.

The requirement of abstract specification independent of the actual
data representation is fundamental for two reasons: 1) it is at the ba-
sis of substitution of one datatype interface for another when they
are similar; and 2) it allows for classification of similar interfaces
based on their efficiency. For example, the linear search function
find() of the Standard Template Library [SL94] works on itera-
tors coming from either a linked-list or an input stream because they
provide similar interfaces for increment and value-fetching. How-
ever, binary_search () is defined only for forward iterator inter-
faces.

The second school of thought in generic programming has its root
in the initial algebra approach to datatypes as advocated by Joseph
Goguen and collaborators [GTWW77, TWWS82] and a calcula-
tional approach to program construction [Bir87, Mee86]. Category
theory is an essential tool in this setting. In “Generic Programming
— an Introduction” [BJJM99], Roland Backhouse et al. stated:

we introduce another dimension to the level of abstrac-
tion in programming languages, namely parameteriza-
tion with respect to classes of algebras of variable sig-
nature.

In this approach, also referred to as datatype generic program-
ming, structures of datatypes are parameters of generic pro-
grams. Datatype generic programming [JJ96, JJ97, BJIM99,
Hin00, Hin04] has had a strong focus on regular datatypes essen-
tially described by algebras generated by the functors sum, product

and unit. Algorithms written for those functors can then operate
on any inductive datatype, and are thus inherently very generic. In-
deed, a fairly large class of generic algorithms can be defined in this
manner, such as structural equality, serialization/deserialization,
zips, folds, and traversals.

The Musser—Stepanov style of generic programming emphasizes
concept analysis, the process of finding and establishing the im-
portant classes of concepts that enable many useful algorithms to
work. Programmers then explicitly define correspondence from
their datatypes to those classes of concepts. A thesis of this pa-
per is that concept analysis is a way of looking for functors that
capture common structures. We can see that the two definitions of
generic programming are fundamentally very close to each other,
but the emphasis in each view is on different aspects: one focusing
on a particular structural algebra for datatypes and the algorithms
defined in terms of that algebra, whereas the other on finding and
classifying classes of algebras based on some notions of efficiency.

Finally, we can observe that while both methodologies have an un-
derlying theoretical language-independent model, C++ has become
the dominating platform for the Musser—Stepanov style!, whereas
Haskell and its variants are the almost exclusive tool for data-type
generic programming.

3 Using category theory

Category theory is a branch of mathematics originally developed
as a language to unify and abstract over many structure and proof
patterns in Algebraic Topology. Category theory — also occasion-
ally referred to as “abstract nonsense” or “the theory of empty set”
— has found an unreasonably effective application in Computer
Science. The theoretical core ideas of the categorial approach to
datatypes and generic functions go back at least to Goguen and col-
laborators [GTWW77].

3.1 Elementary notions

This section recalls some basic notions of category theory and es-
tablishes vocabulary used in the rest of the paper. We have kept
the load of jargon to the minimum; the reader interested in further
development of category theory might advantageously consult the
standard textbook of Saunders Mac Lane [MLO1]. Within the dis-
cussion, we include examples of how the categorial notions become
manifest as idioms and patterns in practical programming.

3.1.1 Categories

A category C is a collection of objects and arrows (also called mor-
phisms) between objects with three fundamental operations:

1. Every arrow @ in ( is associated with two objects:
e its source dom @, an object of C, and

e its target cod @, also an object of C.

Thus, an arrow is often written as ¢ : X — Y, where X is the
source and Y the target.

2. Every object X in (C is associated with a distinguished arrow
Ix : X — X, called the identity arrow of object X.

IThough Musser’s and Stepanov’s early work on generic pro-
gramming was in the context of Scheme and Ada.



3. For two composable arrows ¢ : X — Y and y:Y — Zin C,
the composition N =yo @ : X — Z is again an arrow in .

Furthermore, the composition operator must be associative
and admits the identity arrow as unit, which diagrammatically
reads

(Moy)op=no(yoo) 9

The collection of arrows from an object X to an object Y is called
the hom-ser from X to Y and written hom (X,Y). The subscript is
used to emphasize the category under consideration.

3.1.1.1 Examples

Small sets Our first example of a category is Set whose objects
are sets and arrows are the usual total functions between sets.

Complete partial orders Recall that a partial order < on a set
X is a binary relation on X that is reflexive, transitive and anti-
symmetric. A set equipped with a partial order is said a partially
ordered set or poset for short. For example, the set IN of natural
numbers equipped with the relation “divides” is a poset. A func-
tion f from a poset (X, <x) to a poset (Y, =<y) is said monotonic if
f(x1) <y f(x2) whenever x; <x x3. An ®-chain in a poset X is a
sequence x : IN — X such that x; < x;41. A poset in which every
-chain has a least upper bound is called an w-complete poset. An
o-complete poset with a least element is said to be an ®-complete
pointed poset. For example, the power set 24 of a set A is an ©-
complete pointed poset when equipped with inclusion as partial or-
der.

A continuous function between two posets is a monotonic func-
tion that sends the least upper bound of an ®-chain to the least
upper bound of the image of the chain. The collection CPO of
m-complete pointed posets is a category where the arrows are con-
tinuous functions; CPO | is a CPO with a least element.

3.1.2 Initial and terminal objects

An object i is called initial in a category ( if, for every object X in
C, the hom-set hom (i, X) is a singleton. Dually, an object t is said
to be ferminal if for every object X in C, the hom-set hom, (X, t) is
a singleton. A category can admit at most one initial (resp. termi-
nal) object, up to isomorphism.

3.1.2.1 Examples

In Set, the empty set 0 is initial. On the other hand, every singleton
1 is terminal.

3.1.3 Functors

Categories are not very interesting by themselves; what is interest-
ing about them is what is happening in or between them, e.g. func-
tors, etc. that we will define shortly. When studying structures, the
first natural thing one usually does is to look for properties that re-
main unchanged over similar structures. For categories, that means

properties that remain unchanged through the composition operator
in a class of structures.

A functor F from a category C to a category 9D is a morphism of
categories; it consists of two parts:

1. An object function which assigns an object F (X) in D to ev-
ery object X in C;

2. Anarrow function that assigns an arrow F (@) : F (X) — F (Y)
in D to every arrow @ : X — Y in C such that

o the identity arrow is sent to the identity arrow, i.e.,
F(Ix) =Ipxx)
for every object X in C,

e two composable arrows @ : X — Y and y:Y — Z are
sent to composable arrows and the property

F(yog)=F(y)oF(¢)
holds.

We will say that F (@) is the /ift of the arrow ¢ by F'.

3.1.3.1 Examples

Identity functor A ubiquitous functor is the identity functor L
Both its object function and arrow function yield their arguments
unchanged.

Constant functor Any object A in a category C gives rise to a
functor A as follows: the object function sends all objects to A, and
the arrow function sends all arrows to the identity arrow of A. In
particular, “the” singleton object 1 gives rise to the unit functor 1.

3.1.4 Multivariate functors

The notion of functor can be generalized to that of bifunctor, oper-
ating simultaneously on two categories so that the composition law
holds component-wise:

F(@2001,y20y1) =F (¢2,¥2) o F (¢1,¥1) -

3.1.4.1 Examples

For the purpose of this paper, we will assume that we are mostly
working in CPO, . This simplifies the exposition allowing us to
talk about least and greatest fixed points, making the connection to
algebras and co-algebras less heavy-weight. The functor examples
given in this section could, however, be defined in a more general
setting by universal property, i.e., by singling out specific objects
with unique arrows to or from them.

Product functor A commonly used functor is the product func-
tor. Its object function sends two objects X and Y to the object

XxY={(xy)|xeX,yeY}

and its arrow function sends two arrows @ : X — Sandy:Y — T
to the arrow @ X Y : X X Y — Sx T defined by

(Ox W) (x,y) = (9 (x),w(y)).

It can be readily verified that X indeed is a bifunctor.



The product functor is concretely realized in programming lan-
guages in various ways. In C++ for instance, the object function is
implemented by the standard library class template std: :pair<X,
Y>. However, there is no predefined arrow function. One can be
literally defined as

template<class X, class Y, class S, class T>
std::pair<s, T>
lift (const std::pair<X, ¥Y>& p, S £(X), T g(Y¥))
{

return std::pair<S, T>(f(p.first), g(p.second));
}

Associated with the product functor are the projection combinators
71 and T, leading to the tupling combinator /\ that makes the fol-
lowing diagram commute

T
9 ? vy
oV
b9 \ ¥
X XxXY Y

for any pair of arrows @ : T — X andy: T — Y.

In code, the tupling combinator would read

template<class T, class X, class Y>
std::pair<X, Y> tuple(T t, X £(T), Y g(T))
{

return std::pair<¥X, Y>(f(t), g(t));
}

Sum functor Yet another commonly used functor is the discrim-
inated union. It takes objects to ragged pairs

X+Y={0}xXU{l}xYU{Ll}
and arrows to arrows defined by case analysis

(p+v) (L) =1L
(0+¥) ((0,x) = (0.9(x))
(0+¥) (1y) = (LY ())

where a pattern matching is done as follows: if the argument is
junk, then it is returned untouched; if the argument was built from
an element of the first component then it is extracted, given to the
first arrow and the result is packaged back into the first component;
otherwise if the argument was built from an element of the second
component then it is extracted, given to the second arrow and the
result is packaged back into the second component.

The above behavior takes lots of words to describe but very few
symbols to define in Haskell

data Either a b = Left a | Right b

eitherLift ::
(a =>c) -> (b -> d) -> Either a b -> Either ¢ d
eitherLift f g (Left x) = Left (f x)

eitherLift f g (Right y) = Right (g y)

Discriminated unions are idiomatically expressed in languages
without built-in pattern matching as instances of the Visitor De-
sign Pattern [GHJIV94]. In C++ for example, using this scheme we

define a base class Either with derived classes Left and Right. A
class EitherVisitor that can visit classes derived from Either is
also needed.

template<class X, class Y> class Either;
template<class X, class Y> class Left;
template<class X, class Y> class Right;

template<class X, class Y>

struct EitherVisitor {
virtual void visit (const Left<X, Y>&) = 0;
virtual void visit (const Right<X, ¥Y>&) = 0;

i

template<class X, class Y>
struct Either {
virtual "Either() { }
virtual void accept (EitherVisitor<X, Y>& v) const = 0;

i

template<class X, class Y>
struct Left : Either<X, Y> {
const X& x;
Left (const X& x) : x(x) { }
void accept (EitherVisitor<X, Y>& v) const
{ v.visit (*this); }
bi

template<class X, class Y>
struct Right : Either<X, Y> {
const Y& y;
Right (const Y& y) : y(y) { }
void accept (EitherVisitor<X, Y>& v) const
{ v.visit (*this); }
bi

The code has a fair amount of boilerplate to simulate pattern match-
ing. Now, the lift mapping itself can be defined as

template<class X, class Y, class S, class T>
const Either<S, T>
lift (const Either<X, Y>& e, S £(X), T g(Y))
{
typedef S (*F) (X);
typedef T (*G) (Y);
struct Impl : EitherVisitor<X, Y> {
F f;
G g;
const Either<S, T>* value;
Impl(F £, G g) : £(f) g(g), value() { }

void visit (const Left<X, Y>& e)
{

value = left<S, T>(f(e.x));
}
void visit (const Right<X, Y>& e)
{

value = right<S, T>(g(e.y));
}

}i

Impl vis(f, g);
e.accept (vis);
return *vis.value;

We use helper functions left<S, T>() and right<S, T>() for
allocating objects of the obvious types. The code is undoubtly more
involved than the corresponding few lines in Haskell (or ML). It is



not intended as a translation of Haskell to C++, but as illustration
of both basic categorial constructs and common techniques used in
languages lacking direct support for pattern matching.

Dually to the case of product, the sum functor comes with two in-
jection combinators 11 and 1, and a conflating combinator V making

D L

X X+ Y

RXVY/
v

V4

a commutative diagram, for any pair of arrows @ : X — T and y :
Y—-T.

In code, the destruction combinator is typically given by case anal-
ysis (because its domain is a discriminated union).

either :: (a -> ¢) -> (b -> ¢) -> Either a b > ¢
either f g (Left x) = f x
either f g (Right y) =gy

The Maybe functor It is the functor 1 + I whose action is de-
scribed diagrammatically as

Maybe
X——1+X

q’l
Maybe

Yy ———1+Y

lMaybe(q})

Conceptually, it describes the type of objects that may hold values
of another datatype or nothing.

3.1.5 Algebras and co-algebras

In this section we consider only endofunctors, i.e., functors with
identical sources and targets.

3.1.5.1 Algebras

The notion of algebra generalizes that of X-algebra from the theory
of Universal Algebra [Coh81] where an algebra can be thought of as
interpretation of a collection of function symbols, and the structures
of their domains are given by the functor.

Given an endofunctor F of a category C, an arrow of the form
o:FX)—X

is called an F-algebra — written (o, X)p or simply (o, X) when
the functor is understood from context — and the object X is its
carrier.

In CPO, for example, if one thinks of a polynomial functor as
describing a structure X together with operation symbols, then an
algebra appears as an interpretation by case analysis.

Example The Haskell datatype

data Nat = Zero | Succ Nat

is a Maybe-algebra, because the above definition introduces the op-
eration Zero Y Succ where

Zero :: Nat -- can be thought as Zero :: 1T -> Nat
Succ :: Nat -> Nat -- successor operation

Here we would like to interpret Zero as the natural number O, and
Succ as the operation that yields the successor of a natural number.
Of course, that is not the only possible interpretation; but among all
possible interpretations, there is a distinguished one. We make that
idea more precise in the following paragraphs.

Given an endofunctor F on a category C and two F-algebras (X, a)
and (Y,P), an arrow @ : X — Y that makes

a commutative diagram, i.e., oo = fo F(9), is called an F-
algebra homomorphism. The collection Alg (F) of F-algebras can
be readily seen to form a category where the arrows are the F-
algebra morphisms. The initial object (uF,b) of that category, when
it exists, is called the initial F-algebra. It has the distinguishing
characteristic that given any F-algebra (¢,X) there is unique F-
algebra homomorphism — written (@) — from uF to X making
the diagram

b
F(uF) ———— > uF

F((Itpl))l J{M

FX)— 2 o x

commutative. The arrow (@) is said to be the catamorphism of @.
Examples of catamorphisms will be given in §3.2.1

3.1.6 Coalgebras

A coalgebra is the dual notion of an algebra, i.e., an arrow of the
form

o:X —F(X)

which we will denote by [, X]|r. One can also define the notion
of F-coalgebra homomorphism which is an arrow Yy : X — Y that
makes the diagram
X
WL
Y

commute for any pair of F-coalgebras o0 and B. The collection
CoAlg (F) of F-coalgebras, with F-coalgebra homomorphisms as
arrows, is a category. The terminal object (VF,f) of that category,
when it exists, is called the final coalgebra of the functor F. It is
characterized by the fact that given any F-coalgebra [y, X], there
corresponds a unique F-coalgebra homomorphism from X to VF

o

- |



that makes

X —Y L Fx)

ML J{F<KW])
§

VF —————> F (VF)

a commutative diagram. The F-coalgebra [y] is called the anamor-
phism of the arrow y.

3.2 Categorial datatypes
3.2.1 Initial datatypes

The initial algebraic approach to datatypes posits that when work-
ing in an appropriate category, many abstract data types are nothing
but initial algebras of some functor. For example, the usual set of
natural numbers as described by the Peano axioms is the initial al-
gebra of the functor Maybe.

The main benefit of viewing datatypes as initial algebras is that an
iteration operator over the datatypes, called fold, follows for free.
That crucial property provides a convenient implementation tool
and reasoning device to capture patterns. In CPQO  for instance,
it can be shown that every polynomial functor has an initial alge-
bra, which in fact is its least fixed point.

For example, consider the bifunctor
S(T,X)=14T x X = Maybe (T x X).

Its least fixed point with respect to the second argument yields an
object parameterized by T

Seq(T) =1+T x Seq(T)

which captures many algebraic aspects of finite sequences of values
of type T. When viewed as acting on 7, it can be thought of as
a functor; we will call it the sequence functor. A cons-list from
functional programming practice is an example of such an object.
In Haskell, it is defined by

data List a = Nil | Cons a (List a)

For a fixed T, Seq(T) is the least fixed point of the functor X +—
1+ 7 x X. Computing the length of such list is readily implemented
by

length :: List a -> Int
length Nil =0
length (Cons a as) =1 + length as

where it is apparent that the length function is obtained by sending
the unit value (1) to 0 and the list constructor Cons to the succes-
sor operation. That is the essence of catamorphisms, i.e., mapping
constructors to functions. Note how that description is an abstract
specification of the following C++ algorithm:

template<class Forward>
int length(Forward first, Forward last)
{
int n = 0;
for (; first != last; ++first)
++n;
return n;

}

The fundamental operations of the functor Seq are materialized here
by

e when to stop or empty sequence 1 < first == last;

o next elements of the sequence ++first.

Then the mapping corresponds to initialization to 0 and incremen-
tation respectively. The act of replacing a signature (here O and
the successor functions) with a function is the essence of catamor-
phism, and the basis of polytypic functions. The STL algorithm
accumulate is the fold for sequences, and many other STL algo-
rithms are specializations of it.

3.2.2  Final datatypes

Final datatypes are dual to initial datatypes. They can be modeled
as final coalgebras. In the category CPO |, the final coalgebra of
a polynomial functor is its greatest fixed point. For example, the
greatest fixed point of the functor

X—TxX

is the infinite list or stream of values of types T, characterized by
two fundamental operations

head: Stream (T) — T
tail: Stream(T) — Stream (T).

The C++ standard iterator ostream_iterator<> is a genuine ex-
ample of handles to streams — there is no way to test for “stopping
conditions”.

The greatest fixed point of the X — Maybe (T x X) (see §3.2.1) is
a potentially infinite list. Unlike the case for streams, one can test a
potentially infinite list for stopping conditions.

The main difference between initial datatypes and final datatypes is
that the former are characterized by constructors whereas the latter
are characterized by observers and modifiers.

4 Recursion patterns

The categorial approach to data types makes clear connections be-
tween the patterns of “regular” recursive algorithms and those of
data types. The most popular being catamorphism, anamorphism
and hylomorphism (an anamorphism followed by a catamorphism)
[MFP91]. Interestingly, such patterns are essentially present in the
Musser—Stepanov approach to structure algorithms, in slightly dif-
ferent forms (iterative mostly) and spelled out differently. Consider
the following function template accumulate from the STL:

template <class Input, class T, class BinOp>
T accumulate (Input first, Input last, T init, BinOp op)
{
for (; first != last; ++first)
init = op(init, *first);
return init;

}

This function essentially defines what corresponds to a fold, the
general recursion operator for defining catamorphisms, over a List
functor. Compare this to the typical definition of a fold in, say,
Haskell:



foldr cr(a—>Db->Db) >b->[a] >Db
foldr £ z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

When foldr is called with a mapping for the data constructors
list, we get specific catamorphisms. This is directly visible in the
Haskell case: the mapping z is applied to lists constructed with
[1, and f to lists constructed with the cons operator :. We use
foldr (instead of foldl) because it is the natural iteration opera-
tion for the list datatype as defined in Haskell. For example, foldr
(+) 0 a:(b:(c:[])) gives, after mapping + and 0 appropriately,
at (b+(c+0)).

In the C++ version, init corresponds to z, the empty list is denoted
by the negation of first != last, and op is the same as £. As an
example, in Haskell, the catamorphism length for computing the
length of a list is obtained by mapping 0 to the empty list, and an
increment function to the cons constructor:

length 1s = foldr (1+) 0 1s

Analogously, the C++ length function can be written in terms of
accumulate as follows:

struct incrementor f{

template<class X, class Y>

X operator() (X x, const Y& t) const { return x + 1; }
i

template <class In>
int length(In first, In last)
{
return accumulate (first, last, 0, incrementor());

}

With the help of a library that provides convenient notation [JPLO3],
one can simply write

template <class In>
int length(In first, In last)
{
return accumulate (first, last, 0, _1 + 1);

}

Many other STL algorithms — for_each, transform, and £ind to
name a few — can be defined as catamorphisms using accumulate.
The view of a fold as a combinator that defines a traversal, or re-
cursion pattern, for algebras with a particular signature, applies
equally well in the context of STL, as it does in the context of Bird—
Meertens formalism. However, whereas generalized folds over all
regular data types, such as binary trees, are possible in data-type
generic programming, this is not the case for STL. For example,
accumulate is defined only for sequences, not for algebras describ-
ing binary trees. As a remedy, STL defines a homomorphism from
binary trees (the map data structure implemented as red-black trees)
to sequences, but this does not enable generic algorithms that truly
operate on the structure of the tree. In particular, the homomor-
phism fixes in-order as the only traversal for STL maps. There
are practical consequences of this. For example, copying a STL
map to another map with the std: : copy algorithm exhibits worst
case complexity in terms of necessary rotations in the underlying
red-black tree. Similarly, the generic find algorithm cannot take
advantage of the special structure of the tree.

S Transforming sequences

In line with our “meta” views developed in the opening of this re-
port, we start with the simple idea of transforming a sequence into
another one by applying a given function to each element. For con-
creteness, here is a Scheme routine for that:

(define (map function sequence)
(cond ((null? sequence) nil)
(else (cons (function (car sequence))
(map function sequence)))))

That definition assumes the ubiquitous, built-in, Scheme datatype
of list to represent a sequence of items. The program fragment in-
spects its input with the observers

e null? to test for an empty sequence;
e car to inspect the value of the head of a sequence;

e cdr to get to the remaining items in a sequence;
and constructs its output with:

e cons to construct a new sequence out of an existing item and
a sequence.

These operations seem to be fundamental primitives needed to write
the algorithm as a Scheme program. Data constructors (e.g. cons)
are typical to initial algebra treatment of generic datatypes and
functions, whereas observers (e.g. null?, car, cdr) are defining
characteristics of final coalgebras. Consequently, this expression of
the transformation function makes a mixture of initial algebras and
final coalgebras. Is that mixture essential to capture the algebraic
essence of map? We will see a purely initial algebraic formulation
in §5.1. If not, is that mixture essential to make map operate on
a wider class of sequence implementations? A fundamentally fi-
nal coalgebraic definition is given in §5.2 as a C++ function that
operates on a wide variety of sequence instances.

The definition of map has a direct imprint of the built-in list type
— uses of null?, car, cdr and cons that have built-in meaning.
As is, it is not usable with another incarnation of sequences, say
with vectors. However, that limitation can be overcome in several
ways. One way is to use symbols — e.g. empty?, head, tail,
new-seq and null — that can support the abstract operations on a
variety of sequence implementations, based on the “data-directed”
programming paradigm [ASS84]. In that perspective, their imple-
mentations would abstract away the differences in sequence im-
plementations through runtime type-based dispatch. In C++ such
an approach could be expressed through overloading or overriding,
whereas in Haskell it would take the form of type classes.

Another way of removing the limitation is via higher-order func-
tions, passing the necessary operators as parameters:

(define (map fun seq empty? head tail new-seq null)
(cond ((empty? seq) null)
(else (new-seq (fun (head seq))
(map fun (tail seq) empty?
head tail new-seq null)))))

This version is fully general and makes no hard-coded assumptions
on how the sequence is represented. However, the function may
be awkward to use. In particular, every use site of this function
must ensure that the right operations are passed along with the right



sequence implementations. For example, calling map with a list and
vector-ref will lead to (runtime) error. We see that what we need
here is a way of referring to the iteration operator of the concrete
implementation of the notion of sequence.

This new version of map, as well as the first, features several is-

sues in generic programming — accessors as final coalgebras and
constructors as initial algebras.

5.1 A slightly different look at map

The map function is also part of the Haskell Prelude [PJO3] and
defined as

map :: (a —> b) —> [a] —> [b]
map £ [] = [
map £ (x : xs) =f x : map f xs

The explicit type annotation makes it unambiguous that map is de-
fined to work only on Haskell’s built-in datatype list. The only
genericity achieved here is the variability of the contained element
type. However, as we observed in the previous section, the notion
of transformation is not restricted to a specific instance of the notion
of sequence.

This expression of map uses a slightly different approach. Namely,
it accesses the building blocks of the input sequence through pattern
matching. Therefore it makes essential use of the list data construc-
tors, and is completely defined in terms of those. It can be com-
pletely characterized in terms of the initial algebra for list (which
really has a stack implementation in most functional programming
languages). Consequently, while the definition works on the list
implementation of the notion of sequence, it does not work on the
Haskell Array implementation or any other sequence implementa-
tion that does not use the list constructors.

To overcome the use of built-in constructors that tie map to a given
data type, the Haskell library uses a type class Functor as imple-
mentation of the general notion of functor, as discussed in §3.1.3:

class Functor f where
fmap :: (@ > b) fa->£fb

The idea is that the symbol fmap will be applicable to all type con-
structors for which there are known instance declarations stating
that they act like functors. Given such a declaration, a use of fmap
on a particular concrete sequence is to be made in conjunction with
Functor instance declarations for that concrete sequence imple-
mentation. This situation reminds us of the drawbacks typical of
object oriented programming where operations are closely tied to
objects (e.g. member functions) so that writing N algorithms for P
datatypes requires solving N x P problems.

Applying Stepanov—-Musser’s methodology to lift map to more
generic levels, capable of operating over a wider range of data
types, requires giving up specific knowledge of the built-in list type.
As a consequence, the expression of the idea of sequence transfor-
mation seems to become more involved. To what extent are the
added complexities intrinsic to map as opposed to language arti-
facts? Is the increase of complexity a sign of useful generality gain?

5.2 Yet another look at map

In this section, we look at the expression of the map that in the C++
community is known as the standard algorithm transform:

template<class In, class Out, class Oper>
Out transform(In first, In last, Out out, Oper op)
{
for (; first != last; ++first)
*out++ = op(*first);
return out;

}

It is standard, in programming with C++, to represent sequences
as pairs of iterators; thus generic sequence algorithms operate on
such representations, as laid out in the STL [SL94]. The operations
of reading the head of a sequence and moving to the remaining
parts are implemented by * and ++ operators. The C++ version of
transform does not use list (sequence) constructors to build the
result. Rather, the formulation uses accessors, as if the view is that
of final datatypes. Consequently, the algorithm can work on all in-
stances of iterators (therefore sequence instances) that provide sim-
ilar interfaces. The complexity in terms of the number of concrete
sequence implementations and concrete transformation implemen-
tations is significantly reduced.

6 Limitations

The semi-open interval model used in the STL to represent se-
quences leaves some data structures out of the picture, most notably
circular lists. Similarly, circular list appears to resist initial data type
formulations. In fact, circular lists appear to be more amenable to
formalization through final coalgebras [Kam83].

What do we gain from the category theory approach to generic pro-
gramming? Is it effective? What does it explain and what does it
predict?

In our view, the categorial approach seeks to capture common alge-
braic structures, similarities of interfaces as advocated by Dehnert
and Stepanov [DS98] (see Section 7). For example, the fold() iter-
ation operators are implementation tools and reasoning devices for
capturing traversal and proof patterns common to a class of generic
functions [Hut98]. We find the categorial approach as a promising
starting point for a theory that can clarify and explain the practice
of Musser—Stepanov style generic programming. Moreover, we be-
lieve, in accordance with what we state in the introduction of this
paper, that the mathematical framework is sufficient for prediction
and conquering new grounds as well such as STL in parallel and
distributed programming contexts. Along those lines, we mention
that libraries and compiler frameworks [RG03] based on the cal-
culational approach, from functional programming perspective, are
subjects of active research.

7 Discussion

In this section, we examine, within the mathematical framework in
place, the main two approaches to generic programming. The pur-
pose is to identify commonalities and differences in more definite
terms.

Dehnert and Stepanov [DS98] advocate maximizing reuse of soft-
ware components through alikeness identification:



[...] Breadth of use, however, must come from the sep-
aration of underlying data types, data structures, and
algorithms, allowing users to combine components of
each sort from either the library or their own code. Ac-
complishing this requires more than just simple, abstract
interfaces — it requires that a wide variety of compo-
nents share the same interface so that they can be sub-
stituted for one another. It is vital that we go beyond
the old library model of reusing identical interfaces with
pre-determined types, to one which identifies the mini-
mal requirements on interfaces and allows reuse by sim-
ilar interfaces which meet those requirements but may
differ quite widely otherwise. Sharing similar interfaces
across a wide variety of components requires careful
identification and abstraction of the patterns of use in
many programs, as well as development of techniques
for effectively mapping one interface to another.

Separating data structures from algorithms is key to reducing the
complexity of implementing N algorithms for P data structures, as
exemplified by the STL. At first sight, that seems to run contrary to
the practice of the calculational approach which puts emphasis on
iteration operators (folds) intimately associated with recursive data
structures. However, it should be observed that once the class of
algorithms of interest is identified (e.g. sequence algorithms) the
iteration operator is also fixed. Other data structures “just” need
to have their iteration operators adapted or mapped to the iteration
scheme of reference. For example, in the STL all sequences as well
as associative containers (binary trees in disguise) provide means
to iterate linearly over them.

The “minimal requirements” tip translates to “final coalgebras” in
our framework. That aspect is unlike the approach of the Bird—
Meertens formalism, which has been traditionally based on “initial
algebras.”

Dehnert and Stepanov [DS98] continue:

We call the set of axioms satisfied by a data type and a
set of operations on it a concept. Examples of concepts
might be an integer data type with an addition opera-
tion satisfying the usual axioms; or a list of data ob-
jects with a first element, an iterator for traversing the
list, and a test for identifying the end of the list. The
critical insight which produced generic programming is
that highly reusable components must be programmed
assuming a minimal collection of such concepts, and
that the concepts used must match as wide a variety
of concrete program structures as possible. Thus, suc-
cessful production of a generic component is not sim-
ply a matter of identifying the minimal requirements of
an arbitrary type or algorithm — it requires identifying
the common requirements of a broad collection of sim-
ilar components. The final requirement is that we ac-
complish this without sacrificing performance relative
to programming with concrete structures.

We can contrast the above to a characterization of abstract data
types as classes of algebras. According to Thatcher er al [TWW82]:

what is “abstract” about an abstract data type is that it
consists of an isomorphism class of algebras rather than
any concrete representation of the class. When it comes
to specifying an abstract data type one can display a par-
ticular algebra and define the abstract data type as the

isomorphism class of that algebra. The proposed alter-
native is to characterize the isomorphism class using ax-
ioms written in terms of the operations on the types.

A fundamental difference between the first school and the second
school is that the latter equates linguistic support with generic pro-
gramming, while the former defines it as a methodology. Further-
more, the Musser—Stepanov school promotes structuring compo-
nents based on the efficiency or algorithmic complexity offered by
the coalgebras, whereas those concerns appear to be secondary in
the calculational approach. For example, the data structure list
is usually taken as the canonical realization of sequences in the
functional programming setting. We are not aware of work in the
calculational approach, where complexity guarantees of operations
(in the style of Musser—Stepanov) and genericity are given equal
weight.

In a sense, the opposition of styles is similar to that of bottom-
up versus top-down design. From our perspective, a good the-
oretical framework for generic programming should provide for
mathematical tools necessary for systematic application of Dehn-
ert and Stepanov’s methodology to both the implementation and
correctness proof of generic components as exhibited by the Bird—
Meertens formalism.

8 Conclusions

The two approaches to generic programming, 1) as defined by the
process and outcome of designing STL and similar libraries, and 2)
as defined by the practice of data-type generic programming in the
functional programming community, are intrinsically connected.
The first approach to generic programming focuses on finding use-
ful fundamental algebras, and defining generic functions mapping
to such algebras following a final coalgebra point of view. The
second, datatype generic programming, operates on initial algebras
and focuses on finding algorithms on those algebras. These algo-
rithms are applicable to a wide variety of data-types, as there are
conversions from regular inductive datatypes to the structures of the
functors that define them. The most interesting aspect of datatype
generic programming is iteration operators for free as implementa-
tion tools and reasoning devices to capture patterns in proofs about
generic functions. Combining Musser—Stepanov’s methodology
with a categorial approach to datatypes appears to be a promising
road for systematic implementation and proof of properties about
useful generic programming, and is subject for future work.
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Abstract

We analyze software reuse from the perspective of informa-
tion theory and Kolmogorov complexity, assessing our ability
to “compress” programs by expressing them in terms of soft-
ware components reused from libraries. A common theme
in the software reuse literature is that if we can only get the
right environment in place— the right tools, the right gener-
alizations, economic incentives, a “culture of reuse” — then
reuse of software will soar, with consequent improvements
in productivity and software quality. The analysis developed
in this paper paints a different picture: the extent to which
software reuse can occur is an intrinsic property of a problem
domain, and better tools and culture can have only marginal
impact on reuse rates if the domain is inherently resistant to
reuse. We define an entropy parameter H € [0, 1] of problem
domains that measures program diversity, and deduce from
this upper bounds on code reuse and the scale of compo-
nents with which we may work. For “low entropy” domains
with H near 0, programs are highly similar to one another
and the domain is amenable to the Component-Based Soft-
ware Engineering (CBSE) dream of programming by compos-
ing large-scale components. For problem domains with H
near 1, programs require substantial quantities of new code,
with only a modest proportion of an application comprised
of reused, small-scale components. Preliminary empirical re-
sults from Unix platforms support some of the predictions of
our model.

1 Introduction and Overview

Software reuse offers the hope that software construction can
be made easier by systematic reuse of well-engineered com-
ponents. In practice reuse has been found to improve pro-
ductivity and reduce defects [3] [12} [16] 23] [24]. But what
of the limits of reuse — will large-scale reuse make software
construction easier? Thinking here is varied, but for the sake
of argument let me artificially divide the opinions into two
competing hypotheses. First the more enthusiastic end of the
spectrum, which I associate with the Component-Based Soft-
ware Engineering (CBSE) movement.

Hypothesis 1 (Strong reuse). Large-scale reuse will allow
mass-production of software, with applications being assem-
bled by composing large, pre-existing components. The activity
of programming will consist primarily of choosing appropriate
components from libraries, adapting and connecting them.
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Strong reuse is thought to thrive in problem domains with
great concentration of effort and similarity of purpose, i.e.,
many people writing similar software whose requirements
show only minor variation. However, the question of whether
strong reuse can succeed for software construction considered
globally, across disciplines and organizations, remains uncer-
tain. A more cautious view of reuse is the following.

Hypothesis 2 (Weak reuse). Large-scale reuse will offer use-
ful reductions in the effort of implementing software, but these
savings will be a fraction of the code required for large projects.
Nontrivial projects will always require the creation of substantial
quantities of new code that cannot be found in existing compo-
nent libraries.

Representative of weak reuse thinking is the following pre-
scription for code reuse in well-engineered software from Jef-
frey Poulin [24]: up to 85% of code ought be reused from
libraries, with a remaining 15% custom code, written specifi-
cally for the application and having little reuse potential. The
percentage of code that may be reused from libraries varies
greatly across problem domains, but weak reuse paints a fairly
accurate picture of the software landscape of today. Many ex-
planations are proposed for why strong reuse is not happening
on a global scale (cf. [9]). A common position in the reuse
literature is that if we can only get the right environment in
place — the right tools, generalizations, economics, a “culture
of reuse” — then reuse of software will soar, with consequent
improvements in productivity and software quality.

A contrary view. The perspective developed in this paper sug-
gests that the extent to which reuse can happen is an intrinsic
property of a problem domain, and that improving the ability
of programmers to find, adapt, deploy, generalize and market
components will have only marginal impact on reuse rates if
the domain is resistant to reuse. We propose to associate with
problem domains an entropy parameter 0 < H < 1 measuring
the diversity of a problem domain. When H = 1, software is
extremely diverse and we should expect very little potential
for reuse; in fact, we show that the proportion of an appli-
cation we can draw from libraries approaches zero for large
projects. For problem domains with H < 1, software is some-
what homogeneous, and with decreasing H comes increasing
potential for reuse. The theory we develop suggests that an
expected proportion of at most (1—H) of an application’s code
may be reused from libraries, with a remaining proportion H
being custom code written specifically for the application. As
H nears 0 we enter the strong reuse utopia of “programming



by composing large components.” The possibilities of reuse
are strictly limited by the parameter H, which is an intrinsic
property of the problem domain.

We develop this theory by examining our ability to compress
or compactify software by the use of libraries. We shall speak
throughout this paper of compressed programs, by which we
mean programs written using libraries, and uncompressed pro-
grams that are stand-alone and do not refer to library compo-
nents. The principle tools we employ are information theory
and Kolmogorov complexity. Both of these carry subtly dif-
ferent notions of compressibility that we shall have to juggle.
The information theory notion deals with compressing objects
by identifying patterns that appear frequently and giving them
short descriptions — as in English we have taken to saying
“car” for “automobile carriage.” The Kolmogorov version of
compressibility describes our ability to find for a given pro-
gram a shorter program with the same behaviour, without ap-
pealing to how typical that program might be for the problem
domain within which we are working. We assume some basic
familiarity with information theory as might be found in e.g.
[Z, Ch. 2] or [20]. The essentials of Kolmogorov complexity
are reviewed in Section[3

Library components and prime numbers. Integers factor
into a product of primes; software can be factored into an
assembly of components. Library components are the prime
numbers of software. This would be a terribly naive thing to
say were it not for the many wonderful parallels that turn up:

e There are infinitely many primes; in Section [5.2.1| we
prove there are infinitely many components for a prob-
lem domain that reduce expected program size (thus
guaranteeing employment for library writers.)

e The n prime is a factor of ~ —L of the integers. Theory

predicts the n* most frequently used library component
has an ideal reuse rate of about —L—— (Section .
nlognlog™ n

e The Erdos-Kac theorem states that the number of factors
of an integer tends to a normal distribution; we measure
experimental data that suggests a similar theorem might
be provable for software components (Figure[d).

e The Prime Number Theorem states that the n™ prime is
~ log(nlnn) bits long. We show that the ideal configu-
ration for libraries is that the n” most frequently used
component is of size > logn and < %o(ne) fore >0

(Section|5.2.2).

Reuse and Zipf’s Law. It is known that hardware instruction
frequencies follow an iconic curve described by George K. Zipf
for word use in natural languages [17,[19}/29]]. Zipf noted that
if words in a natural language are ranked according to use fre-
quency, the frequency of the n" word is about n~!. Zipf-style
empirical laws crop up in many fields [25][22]. Evidence sug-
gests programming language constructs also follow a Zipf-like
law [5} [18]]. It is natural then to wonder if this result might
extend to library components. Our results support this con-
clusion. Figure [1| shows the reuse counts of subroutines in
shared objects on three Unix platforms, clearly showing Zipf-
like n=! curves. These results are described in detail in Sec-
tion[6] The appearance of such curves is not happenstance. In
Section we argue they are a direct result of programmers

Number of uses
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Figure 1. Data collected from shared objects on several
unix platforms, showing the number of references to li-
brary subroutines. The observed number of references
shows good agreement with Zipf-style frequency laws of
the form ¢-n~" (dotted diagonal lines). A detailed expla-
nation of this data is given in Section [6}

trying to write as little code as possible by reusing library sub-
routines; this drives reuse rates toward a “maximum entropy”
configuration, namely a Zipf’s law curve.

1.1 Organization

The remainder of this paper is organized as follows. Section 2]
introduces an abstract model of software reuse from which
we derive our results. In Section |3| we give a brief overview
of Kolmogorov complexity. In Section [4 we derive bounds
on the rates at which software components may be reused,
and give an account for the appearance of Zipf-style empirical
laws. Section [5] examines the potential for software reuse as
a function of the parameter H. In Section [f] we present some
preliminary experimental results, and Section|[7] concludes.

2 Modelling library reuse

In this section we propose an abstract model capturing some
essential aspects of software reuse within a problem domain.
The basic scenario is this: we have a library, possibly many
libraries that we collectively consider as one, that contains
a great number of software components. These components
may be subroutines, architectural skeletons, design patterns,
generics, component generators, or whatever form of abstrac-
tion we may yet invent; their precise nature is unimportant
for the argument. In using a component from the library we
achieve some reduction in the size of the program, and per-
haps consequently, in the effort required to implement it. Pro-
gram size serves as a rough lower bound to effort, but it would
be a grave error to confuse the two.

2.1 Distribution of programs in a domain

We presume that the projects undertaken by programmers
working in a problem domain can be modelled by a proba-



bility distribution on programs. The probability distribution
is defined on “uncompressed” programs that do not use any
library components. These uncompressed programs can be
viewed as specifications that programmers set out to realize.

We consider compiled programs modelled by binary strings
on the alphabet {0,1}. We write ||w]| for the length of a string
w. Finite programs are countably infinite in number, so we im-
mediately encounter the problem of defining a probability dis-
tribution in which the probability of encountering individual
programs may be infinitesimal. A rigorous approach would be
to employ measure theory, for example Loeb measure, which
would allow us to speak of the probability of individual pro-
grams. This would require some rather daunting machinery
and we instead settle for a more accessible approach similar
to that used by [4} 16, 126].

Let AS" = {wc {0,1}* : |w|| < n} denote compiled programs
of length at most n bits. We introduce a family of conditional
distributions {py, }s,cn Whose domains consist of programs <
so bits in size, that is,

Py AT R

and satisfying Y ps, = 1 and ps,(w) > 0. The intent is that
Ps, (w) gives the probability that someone working in the prob-
lem domain will set out to realize the particular (uncom-
pressed) program w, given that w is at most sy bits long.
For this family of distributions to be compatible with one an-
other we require that py (w) = pg+1(w | [[w| < s0), i.e., we
can get the distribution on length < sy programs by taking
a conditional probability on the distribution for length so+ 1
programs. We do not presume that such distributions can be
effectively described.

In what follows we use the usual notation for expectation with
the implied assumption of sy — o; for example, if f: {0,1}* —
R maps programs to real numbers then by E[f ( )] we mean:

E[f( Z flw Pso

wewl <so

= hrn

if such a limit should exist. For example, a mean program
size E[||w||] may exist for a problem domain, but we do not
require nor expect this.

2.2 The entropy parameter H

A key, perhaps defining, feature of a problem domain is that
there is similarity of purpose in the programs people write.
We do not expect the distribution of programs written in a
problem domain to be uniform over all possible programs, but
rather concentrated on programs that solve certain classes of
problems typical for the domain. We formalize this intuition
by introducing a parameter H for problem domains measuring
how far their probability distribution departs from uniform.
This H is very similar to entropy rate from information theory,
and coincides if we are willing to assume programs are drawn
from a stationary stochastic process. When H = 1 the distri-
bution over programs is uniform, modelling extreme diversity
of software, with little opportunity for reuse. For H < 1 there
is some potential for reuse. In fact as we shall see shortly, we
may expect that up to a proportion 1 — H of programs may be
reused from libraries.

Define the entropy of each distribution py, in the standard way

13

Uncompressed program (without library)

s bits

Compressed program (with library) Library

I | *

> Hs bits

o wN = S

Identifier Component

Figure 2. The basic scenario: programmers in a problem
domain set out to realize a program that can be repre-
sented in s bits when compiled without the use of a library.
By using library components, they are able to reduce the
size of the compiled program, down to an expected size of
> Hs bits.

(see, e.g., [7,120]):
H(pso) =

>

wi[wl|<s0

—Pso (W) 10g2 Pso (W)

This is the expected number of bits required to represent a
program of size < sp in this domain. We are interested in

the limit behaviour of <5 H(ps,), akin to the entropy rate
[A=0] 0 Py

of a random process. In general this limit may not exist —
there might be oscillations — so we need some weaker notion
of limit. We settle for a limsup, which gives an almost sure
upper bound on the limit behaviour.

Definition 1 (Entropy parameter). Define the entropy param-
eter H of a problem domain to be the greatest value that

‘ASI—MH (ps,) attains infinitely often as sy — oo:

. 1
H = 11;(?_sip (MH (pso))
As a consequence of this definition we are guaranteed that
H(ps,) < soH almost surely as sy — oo.

We cannot hope to calculate H from first principles except for
toy scenarios, but there is hope we might estimate it empiri-
cally. We introduce H primarily as a theoretical tool to model
problem domains in which people have great similarity of pur-
pose (H — 0) or diffuse interests (H — 1). The main impact
of H is the following.

Claim 2.1. In a problem domain with entropy parameter H, the
expected proportion of code that may be reused from a library is
at most 1 —H

This is a consequence of the Noiseless Coding Theorem of in-
formation theory (e.g., [1, §2.5]), which states that coding
random data with entropy H requires (on average) at least H
bits. Suppose an uncompressed program has size s < s9. We
defined H so that H(py,) < sH almost surely, so we can com-
press programs to an expected size of at best sH by the Noise-
less Coding Theorem. Therefore the expected amount of code
saved by use of the library is at most (1 — H)s, and it is reason-
able to equate this with the amount of code reused from the



library. An immediate implication is that blanket reuse pre-
scriptions such as “effective organizations reuse 70% of their
code from libraries” are unrealistic; reuse goals need to be
pegged to the problem domain’s value of H.

Figure |2| illustrates the scenario we consider in this paper:
programmers set out to implement the capabilities of some
uncompressed program of length s written without use of a
library, drawn from the distribution for the problem domain.
A programmer implements the program making use of the li-
brary, effectively “compressing” it. The expected size of the
compressed program is at least H's bits, by the previous argu-
ments. The library consists of a set of components, each with
an identifier or codeword by which they are referred to. We
always take programs to be compiled, so as not to care about
the high compressibility of source representations.

2.2.1 Motifs and the AEP

One question we should like to answer is whether when H < 1
there are commonly occurring patterns or “motifs” in pro-
grams that we can put in libraries and reuse to compress
programs. If we are willing to assume that programs in a
problem domain behave as if excerpted from a stationary er-
godic source, then the Shannon-McMillan-Breiman theorem
(asymptotic equipartition property or AEP) [7, §15.7] en-
sures that when H < 1 there are commonly occurring finite
subsequences in programs that can be exploited, and indeed
that we can achieve optimal compression of programs merely
by having libraries of common instruction sequences. That
more complex software components prove necessary in prac-
tice suggests the stationary ergodic assumption is too strong,
and a weaker ergodic property is needed to account for the
emergence of motifs in software when H < 1. It is unclear yet
exactly what this property might be; in the remainder of this
paper we do not assume AEP.

2.3 Libraries maximize entropy

A truly great computer programmer is lazy, impa-
tient and full of hubris. Laziness drives one to work
very hard to avoid future work for a future self. —
Larry Wall

Programmers, so we read, are lazy— they write libraries to
capture commonly occurring abstractions so they do not have
to write them over and over again. The social processes that
drive programmers to develop libraries have an interesting
theoretical effect. We can view programmers contributing to
domain-specific libraries as collectively defining a system for
compressing programs in that domain. If there is a common
pattern, eventually someone will identify it and put it in a
library. Since the absence of common patterns in code is im-
plied by high entropy, we propose the following principle.

Principle 1 (Entropy maximization). Programmers develop
domain-specific libraries that minimize the amount of fre-
quently rewritten code for the problem domain. This tends to
maximize the entropy of compiled programs that use libraries.

As evidence for this principle, we show in Section [f] that the
rate at which library components are reused is empirically ob-
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served to approach a maximum entropy conﬁguration

In practice programmers have to strike a balance between the
succinctness of their programs and their readability; see, e.g.,
[11] for an elegant discussion of such tradeoffs. However, we
maintain that the drive toward terseness and factoring com-
mon patterns is a defining pressure on library development:
entropy is essentially a measure of communication efficiency,
and programmers edge as close to maximum entropy as they
can while maintaining source-code understandability

2.4 The Platonic library

In the early days of computing libraries held a hundred sub-
routines at most; these days it is common for computers to
have a hundred thousand subroutines available for reuse (cf.
Section[6]). Let us suppose that as time goes on we shall con-
tinue to add components to our libraries as we discover use-
ful abstractions and algorithms. Our current libraries might
be viewed as a truncated version of some infinite (but count-
able) library toward which we are slowly converging. It is
convenient to pretend that this limit already exists as some in-
finite “Platonic library” for the problem domain, and that we
are merely discovering ever-larger fragments of it, recalling
Erdos’ book of divine mathematical proofsE] Were we granted
access to the entire library, we might write software in a very
efficient way. We use the Platonic library as a device — a con-
venient fiction — to reason about how useful finite libraries
might be.

Infinite objects need to be treated with care. We shall not
assume that some “optimal infinite library” exists that is the
best possible such library. Nor shall we assume there is some
finite description or computable enumeration of its contents.
We merely assume that fragments of the Platonic library give
us snapshots of what shall be in our software libraries over
time.

2.5 Existence of reuse rates

Numerous metrics have been proposed for measuring reuse.
We focus on the reuse rate of a component, which we write
A(n) and define as the expected rate at which references are
made to the ' library component in a compressed program.
The units of A(n) are expected references per bit of compiled
code. We assume mean reuse rates exist in a problem domain,
in the following sense.

Assumption 1. Let Refs,(w) count the number of references to
the n™ component in a compressed program w of size < sg. We

1 Note that Principle [1] is not intended to appeal to the
maximum entropy principle as advocated by Jaynes, which
deals with maintaining uncertainty in inference.

2We re-emphasize that we are speaking of the entropy rate
of compiled programs; source representations are highly com-
pressible to support readability.

3A Platonic object is an abstract entity thought to dwell
in some realm outside spacetime. Our stance with respect to
software libraries echoes mathematical Platonism, that math-
ematical objects about which we reason exist in some ideal-
ized form outside the physical universe (see, e.g., [2]).



assume that
E[Refs,,(w) ‘ [lw]] :s} ~ Mn)s+o(s) assg—ec (1)

where o(s) denotes some error term growing asymptotically
slower than s.

We unfortunately do not have a good sense of how to go from
the problem domain’s distributions py, on uncompressed pro-
grams to rates of components in compressed programs; this
is tied up with the ergodic process issues mentioned in Sec-
tion[2.2] We dodge the issue by simply assuming that the mean
rates A(n) exist. This is not a demanding assumption; many
sensible random process models would imply Assumption
for example modelling component uses as a renewal process
(see, e.g., [27, §31) [

2.6 Ordering of library components

For convenience we shall suppose the library components are
arranged in decreasing order of expected reuse rate in the
problem domain: that is,

Mn) > A(n+1)

There are two reasons for this. The first is tidiness, so that
when we plot A(n) vs n we see a monotone function and not
noise. The asymptotic bounds we derive on A(r) do not rely
on this ordering. The second reason is that to derive bounds
on how well we might compress programs we need to assign
shorter identifiers to more frequently used components. This
is easiest to reason about if the Platonic library is sorted by
use frequencyE]

3 Kolmogorov Complexity

Kolmogorov complexity, also known as Algorithmic Informa-
tion Theory, was founded in the 1960s by R. Solomonoff, G.
Chaitin, and A.N. Kolmogorov. We shall only make use of
some basic facts; for a more thorough introduction the survey
article [21]] or the book [20] are recommended. The central
idea is simple: measure the ‘complexity’ of an object by the
length of the smallest program that generates it. This gener-
alizes to the study of description systems, that is, systems by
which we define or describe objects, of which programming
languages, logics, and descriptive set theory are prominent
examples. The source code of a program, for example, de-
scribes a program behaviour; a set of axioms describes a class
of mathematical structures. In the general case we have some
objects we wish to describe, and a description system ¢ that
maps from a description w (for us, a program) to objects. The
usual situation is to describe an object by exhibiting a pro-
gram that generates it; in this case we may also provide some
inputs to the program, which we shall call parameters. The

4 For readers familiar with coding theory we forestall con-
fusion by mentioning that the rates A(n) are not the same
as the usual notion of probabilities over countable alphabets.
The rates A(n) are drawn from compressed programs and so
already incorporate code lengths.

5Jeremiah Willcock made the useful suggestion that we
may regard the Platonic library as containing already every
possible component, and the only question is the order in
which they are placed.
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Kolmogorov complexity of an object x in the description sys-
tem 0, relative to a parameter y is defined by:

Co(x | y) = min{[lwl| : ¢ (y) = x}

In the case where the description system ¢ is a programming
language, we may read Eqn. as finding the shortest pro-
gram that, given input parameter y, outputs x. The parame-
ter y does not contribute to the measured description length
Cy(x | y). Without a parameter we have the simpler case
Cy(x) = Cy(x | €) where ¢ is the empty string.

2

For example, we might choose the programming language
Java as our description system; then for some string x, its Kol-
mogorov complexity Cj,y,(x) is the length of the shortest pro-
gram that outputs x. To determine whether use of a library L
offers a reduction in program size, we can consider the com-
bination of Java and the library L as a description system it-
self which we might call Java + L, and compare Cj,,,. (x) to

Cjava(x).

A very useful insight is that the choice of language doesn’t
much matter.

Fact 3.1 (Invariance [20} §2.1]). There exists a universal ma-
chine U such that if ¢ is some effective description system (e.g.,
a programming language) then there is a constant ¢ such that
Cy (x) < Cp(x) +c for any x.

That is, the universal machine U is optimal up to a constant
factor. For this reason the subscript U can be dropped and one
can write C(x) for the Kolmogorov complexity of x, knowing
it is only defined up to some constant factorE]

Some strings have very short descriptions: a string of a trillion
zeros may be produced by a short program. Others require
descriptions as long as the strings themselves, for instance a
million digit binary string obtained from a physical random
bit generation device[] A recurrent theme in Kolmogorov
complexity is that there are never enough descriptions to go
around so as to give short descriptions to most objects. In
the case where both the objects and their descriptions are bi-
nary strings, we have the following well-known result that the
probability we can save more than a constant number of bits
in compressing randomly selected strings is zero.

Fact 3.2 (Incompressibility [20, §2.2]). Suppose g: N — N
is an integer function with g(n) > 0 and g € o(1), that is,
lim,,_,e g(n) = oo. Let x be a string chosen uniformly at random.
Then almost surely:

Co(x) = |Ixll = g (II+1l) &)
Fact[3.2]implies, for example, that one cannot devise a coding
system that compresses strings by even loglogn or o' (n,n)
(inverse Ackermann) bits with nonzero probability. The proof
of Fact uses counting arguments only, with no appeal to
computability of the description system|°| Therefore the in-

There is an easy way to see why this is true: if ¢ is a
programming language, then we can write a ¢-interpreter for
the universal machine U. We can then take any program for
0, prepend the interpreter, and it becomes a U-program. The
constant mentioned reflects the size of such an interpreter.

7 Unless you are rather lucky.

8 There are 2"~8(W+1 _ | descriptions of length at most



equality (3] applies to any description system ¢, even descrip-
tion systems that are not computable. For example, Fact
even applies if we permit ourselves to use an infinite, not com-
putably enumerable library as we described in Section
However, it does not apply in the case where there is a nonuni-
form distribution, as in problem domains where H < 1.

In the remainder of this paper we shall assume compiled pro-
grams are incompressible in the sense of Fact[3.2]

Proposition 3.1. Compiled C programs on existing major ar-
chitectures are almost surely Kolmogorov incompressible.

Note that “almost surely Kolmogorov incompressible” does not
imply anything about the compressibility of typical compiled
programs for a problem domain. Rather, it means that if one
chooses a valid compiled program uniformly at random, with
probability 1 it cannot be replaced by a shorter program with
the same behaviour. In subsequent sections we investigate
problem domains where there is a nonuniform distribution on
programs, i.e., H < 1, where the situation is rosier.

We sketch a proof of Proposition showing that the num-
ber of distinct behaviours described by compiled programs of
s bits grows as ~ 2% on current machines, which implies com-
piled programs are almost surely (Kolmogorov) incompress-
ible. The C language has the useful ability to incorporate
chunks of binary data in a program. For example, the bi-
nary string z = 0110100111011010 may be encoded by the C
declaration

unsigned char z[2] = {0x69, 0xda};

Moreover, such arrays are laid out as contiguous binary data
in the compiled program, so that a binary string of length m
bytes requires exactly m bytes in the compiled program. We
can package such an array with a short program of constant
size that reads the binary string from memory and outputs it
to the console. Every binary string of m bytes may be encoded
by such a compiled program of size at most ¢ +m bytes, where
¢ is a constant representing the overhead of a read-print loop.
Every such program yields a unique behaviour, so the number
of distinct behaviours of compiled programs of s bits is ~ 2.
We can then adapt the argument used to prove Fact re-
placing strings by compiled programs, which shows compiled
C programs are almost surely incompressible.

Note that uncompiled programs are highly compressible. For
example, C language source code may not contain certain
bytes (e.g., control characters) such as the null character 0x00.
This means they can be compressed by a factor of (at least)
ﬁ ~ 0.39%. Restricting our attention to compiled programs

is crucial Pl

n—g(n), and 2! — 1 strings of length at most n. There-
fore the fraction of strings compressible by g(n) bits is at most

%, which behaves in the limit as 278("). If g € w(1) this

value vanishes as n — oo, 50 Cy(x) > ||x|| — g(||x]|) almost surely.

An alternative would be to deal with indices of programs
in the usual sense of computability theory, where we equate
a program with its position in some effective enumeration
of valid source-language programs. However, working with
compiled programs has the additional benefit of brushing
aside issues such as identifier lengths in source code, which
tend to be unnecessarily long to aid readability.
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4 A bound on reuse rates

In this section we derive a bound on the reuse rate A(n) at

which the n™ library component is reused in ‘compressed’ pro-
grams written with use of a library.

4.1 Coding of references

We need some rudimentary accounting of what we gain and
lose by use of the library: we save some by using a library
component, at the cost of having to refer to it. Let us first
consider the cost of referring to components.

We presume that unique identifiers are assigned to library
components; we call these codewords. Let c¢(n) be the binary
codeword for the n'" library component, and ||c(n)|| its length.
Optimal strategies such as Shannon-Fano or Huffman codes
assign shortest codewords to the most frequently needed com-
ponents. Since our library is sorted in order of use frequency
(Section [2.6), we may presume that [|c(n)|| < [[c(n+1)]], i.e.,
codeword lengths are nondecreasing as we go down the list
of components.

In what follows we want to make asymptotic arguments, and
fixing an identifier size (e.g., 64 bits) would lead to wildly
wrong conclusions Instead we require that the identifier
size grows with the number of components, albeit slowly. That
|le(n)]] > log, n follows from the pigeonhole principle. Having
identifiers of length only log, n leads to difficulties, because
they are not uniquely decodable. That is, if I am presented
with a string of such identifiers I have no way to tell where one
identifier stops and the next starts. (This does not arise in cur-
rent architectures because of fixed word size, but as we said,
care is needed in asymptotic arguments). A more accurate re-
quirement is the following, which draws on Kraft’s inequality

that uniquely decodable codes must satisfy Y, 2 llemll < 1,
Proposition 4.1. For identifiers to be uniquely decodable,
lle(n)]| > log™ n

where log™ n =logn+loglogn +logloglogn+ - -- and the sum is
taken only over the positive real terms.

We omit the proof; see e.g., [26} §2.2.4] or [20, §1.11.2] (in
particular problem 1.11.13).

4.2 Derivation of reuse rate bound

We now derive an asymptotic upper bound on the rates A(n)
at which library components may be reused. We do this under
the assumption that each time a library component is used in
a program, the same identifier is used to refer to it, i.e., there
is no recoding of identiﬁers@ Our argument follows standard

101f we fix memory addresses to be representable in 64 bits,
then the time to search an acyclic linked list is O(1) since there
are at most 2% steps the algorithm must go through.

11 There are two reasons for this assumption. (1) On the
architectures from which we collect empirical data, there is
no recoding of identifiers in programs. (2) The reason one
might want to recode identifiers is to save space by introduc-
ing shorter aliases for components for use within the program,
after the initial reference. However, this only saves space if a



lines [25] but adapted to coding of library references under
the model laid out in Section 2

Theorem 4.1. Without recoding of identifiers, the asymptotic
reuse rates M(n) must satisfy A(n) < (nlognlog® n)~!.

PROOF. We count the size of the references to library com-
ponents within compressed programs (i.e., those written with
use of a library). Consider programs of length at most s. As
s — oo, the expected number of occurrences of the n” com-
ponent tends to A(n)s + o(s) under Assumption (1} Referring
to the n* component requires at least log™ n bits (Proposi-
tion[4.1)). We need only consider components whose identifier
length is less than s, since identifiers longer than the program
would not fit. Therefore we consider only up to component
number 2° since log™ 2% > 5.

The expected total size of all the references to components is
then at least:
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AMn)s+o(s Th
n;(()Jr (5)) log

# refs ref size

The references to components are contained within the pro-
gram, and therefore their total size must be less than s, the
size of the program. Therefore we have an inequality@

s

Z (Mn)s+o(s))logtn <s “4)
n=1
Dividing through by s and taking the limit as s — oo,
23 1
élin;rlz:ll S (Mn)s+o(s))logtn <1 5)
Since limy—,o .%0(3) =0by deﬁnitionm
Y An)logtn<i (6)
n=1

We now consider conditions under which this sum converges.
(Sectionsummarizes the asymptotic notations used here.)
We argue using Proposition using a diverging series to
bound the terms of Eqn. (6). The simple argument is to note
that the harmonic series diverges, and therefore the terms of

Eqn. @ must grow slower than this, so A(n)log™n < %, or
AMn) < @. However, this bound is quite loose. A more

component is more likely to be used again given it is used
once. While this is intuitively true of real programs, it is false
under a maximum entropy assumption (Section [2.3): in an
encoding that maximizes entropy, the sequence of identifiers
in a program behaves statistically as if independent and iden-
tically distributed.

12 Inequality becomes an equation if we consider pro-
grams to consist solely of a sequence of component references,
with no control flow or other distractions. This is possible by
building components and programs from combinators, which
can be made self-delimiting [20} §3.2]. This provides a theo-
retically elegant framework, if not entirely intuitive.

13Recall that f € o(g) means limy_ % =0.
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slowly diverging series is },, ngn. Using this,

A(n)logtn <
(n)log™ nlogn
or,
1
< 7
nlognlog™ n 7
This completes the proof. O O

The bound of Theorem is not tight. No tightest bound is
possible using this line of argument since there is no slow-
est diverging sequence with which to bound a convergent
sequence, a classical result due to Niels Abel. However, the
bound is tight to within a factor »® for any € > 0.

Entropy maximization and Zipf’s Law. Theorem pro-
vides an upper bound on A(n), but it could well be the case
that A(n) ~ n%, for example. Why do the curves we see in
practice (e.g., Figure [I) hug the bound of Theorem We
believe the answer to why we observe A(n) ~ % is due to
the tendency of libraries to evolve so that programmers can
write as little code as possible, which in turn implies evolu-
tion toward maximum entropy in compiled code (Principle[T).
The entropy rate of component references is maximized when
AMn) ~ L (see, e.g., [13]).

5 Reuse potential

In the following sections we consider the possibilities of code
reuse in two cases: (1) when H =1 and we have a uniform
distribution on programs; (2) when 0 < H < 1 and we have
some degree of compressibility in the problem domain. The
case H = 0 is left for future work.

5.1 The uniform case: H =1

The uniform case of H = 1, in which every program is equally
likely to be implemented, reduces the scenario to classical Kol-
mogorov complexity with a uniform distribution on programs.
It has some surprising properties that suggest H = 1 to be an
unlikely scenario for real problem domains.

Our first result concerns the number of library components
we might expect to use in a program. Let N(s) be a random
variable indicating for a program of uncompressed size s the
number of components whose use reduces program size. Sur-
prisingly, as program size increases the expected number of
components that reduce program size is bounded above by a
constant.

Theorem 5.1. If H = 1 there exists a constant nc;; independent
of program size s such that N(s) < ncy almost surely.

PROOF. Suppose each component used saved at least 1 bit.
If lims_... E[N(s)] were unbounded, use of the library could
compress random programs by an unbounded amount, con-
tradicting incompressibility (Fact[3.2)). O O

This has a simple corollary concerning the potential for code
reuse.



Corollary 5.1. When H = 1 the expected proportion of a pro-
gram that can be reused from libraries tends to zero as program
size increases.

Because of these results, the case H = 1 is somewhat uninter-
esting and does not seem to model real life, where we know
libraries are useful and let us reduce the size of programs.
In the next sections we examine the more interesting case of
0 < H < 1, where we can compress programs, even ones that
are (Kolmogorov) incompressible, by use of a library.

5.2 The nonuniform case: 0 < H < 1

More interesting than the uniform case is the situation when
0 < H < 1, which implies a nonuniform distribution on pro-
grams. This models problem domains that have some poten-
tial for code reuse, and libraries are of central importance in
reducing program size. Recall from Section that we can
expect to compress programs in such domains from uncom-
pressed size s to at best Hs by use of a library. A standard
result from information theory can be adapted to show this
bound is achievable, at least in a theoretical sense.

Claim 5.1. There exists a library with which uncompressed pro-
grams of size s can be compressed to expected size ~ Hs.

The proof of this is not particularly illustrative and we banish
it to a footnote The gist is to place every possible pro-
gram into the library as a “component,” but ordering them so
that the most likely programs for the problem domain come
soonest in the library order and thus are assigned the short-
est codewords. This is a wildly impractical construction but
demonstrates the claim. In practice we decompose software
into reusable chunks that we put in libraries; that reusable
chunks exist suggests an ergodic property (see Section [2.2.1)).

Unlike the situation of H = 1 where the number of compo-
nents useful for a program was at most a constant, when
0 < H < 1 we have a much more pleasing situation: the num-
ber of useful components increases steadily as we increase
program size.

14 proof We first describe an encoding that compresses pro-
grams to achieve an expected size Hs, and then explain how
to construct the library. Recall the Shannon-Fano code [20,
§1.11] allows a finite distribution with entropy H to be coded
so that the expected codeword length is < H + 1. We adapt this
as follows. For each sg € N, we produce a Shannon-Fano code-
book for all programs of length < sy achieving average code-
word size < H(py,) + 1 for the distribution py, (Section [2.2)).
By definition H(p,,) < Hs almost surely, so this achieves a
compression ratio of H almost surely for each sg as sg — . To
combine all the codebooks into one, we preface a compressed
program with an encoding of its uncompressed length, which
we use to select the appropriate codebook. This can be done
by adding to each codeword ¢+ 2logs bits for some constant
¢, which is negligible with respect to Hs when H > 0. There-
fore this encoding achieves expected program size ~ Hs. We
use the codebook as the library: each component identifier is
a Shannon-Fano code, each component is a program. Note
that the reuse rates vanish for this construction, i.e., A(n) — 0
as 5o — oo, and so the bound of Theorem is trivially satis-
fied. O
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5.2.1 The incompleteness of libraries

Under reasonable assumptions we prove that no finite library
can be complete: there are always more components we can
add to the library that will allow us increase reuse and make
programs shorter. To make this work we need to settle a subtle
interplay between the Kolmogorov complexity notion of com-
pressibility (there is a shorter program doing the same thing)
and the information theoretic notion of compressibility (low
entropy over an ensemble of programs). Now because we
defined probability distributions on programs (rather than be-
haviours), we run into the possibility that the probability dis-
tribution might weight heavily programs that are Kolmogorov
compressible, i.e., the distribution might prefer programs w
with ||w|| >> C(w). For example, a problem domain might
have programs that are usually compressible to half their size
not because the probability distribution focuses on a particu-
lar class of problems, but because we artificially defined pj,
to select only those programs that are twice as large as they
might be (for example, we might pad every likely program
with many nop instructions.) To avoid this difficulty we re-
quire the distributions be honest in the following sense.

Definition 2 (Honesty). We say the distributions p,, for a
problem domain are honest if the programs are Kolmogorov
incompressible. Specifically,

. {c<w>

Il

}—>1 as sg — o (8)
where the expectation is taken over the distributions py,. This
requires that the probability distribution does not artificially
prefer verbose programs with ||w|| >> C(w).

If the distribution for a problem domain is honest and has H <
1, the programs are expected to be information-theoretically
compressible by use of a library, but not Kolmogorov compress-
ible. In other words, our ability to compress programs is due
to a “focus” on a class of problems of interest to the domain,
not just an artificial selection of overly-verbose programs.

Inspired by Euclid’s proof that there are infinitely many
primes, with the honesty assumption we can prove there are
infinitely many reusable software components that make pro-
grams shorter.

First we need two smaller pieces of the puzzle.

Lemma 5.1. If H > 0 then for any finite k, Pr(||w|| <k) — 0 as

S — .

PROOF. We know from definition of H that H(py,) = Hsp in-
finitely many times as sy — o (Section [2.2). Consider how
probability must be distributed among programs of different
lengths to account for this much entropy. We try to account
for as much entropy as we can by short programs, setting a
uniform distribution p(w) = 2%0 on the first 2f% programs—
this is the fewest number of programs that would produce this
much entropy. To programs of length < k we can account for

k
. 1 1 _
Z i, (_THS() log 25 ) ~ okl H.voHSO
i=0

bits of entropy. But as sy — oo, 28T1=H% gy — 0 so we can
account for none of the entropy by programs of length < k.
Therefore Pr(||w|| < k) — 0 as sg — co. O




Lemma 5.2. IfH>0thenE{L} . 0as sy — .

(Iwll

PROOF. Suppose E {HWH} = ¢ for some ¢ > 0. Then there

would be a finite probability that ||w|| < ¢! as sy — oo, contra-
dicting Lemma O

Now we are ready for the main theorem, which proves no
finite library can be “complete” in the sense of achieving a
compression ratio of H when 0 < H < 1.

Theorem 5.2 (Library Incompleteness). If a problem domain
has 0 < H < 1 and honest distributions (Defn. 2, no finite li-
brary can achieve an asymptotic compression ratio of H.

PROOF. Suppose a finite library of components achieves a
compression factor 1 —¢, with optimal compression when
1 —e=H. Call the programming language ¢ and the library
L. We can write an interpreter for ¢ that incorporates the li-
brary L; since the library is finite this is a finite program. We
call the resulting machine model ¢ + L. Consider Kolmogorov
complexity for this machine, writing Cy,(w) for the size of
the smallest ¢-program using L that has the same behaviour
as w. Saying the machine ¢ + L achieves the compression fac-
tor 1 — € implies

(C)]

From the invariance theorem of Kolmogorov complexity

(Fact[3.1)) we have that there exists a constant ¢ such that
C(w) < Copyr(w)+c (10)

for every program w. Dividing through by |w|| and taking
expectation,

E{C(W)} SE{C%LL(W)}_‘_E {L}

11
Il o] Tl an

=1—¢
From honesty E [ T H — 1, and from Lemma we have

E [m} — 0. Therefore |l is, in the limit as sy — oo:

1<(1-¢)+0

For this inequality to hold, € — 0 for any finite library. There-
fore no finite library can achieve an asymptotic compression
ratio < 1 when the distributions are honest. O O

Claim [5.1] showed that an infinite library can achieve ex-
pected size ~ Hs; Theorem [5.2] shows that no finite library
can. Therefore only infinite libraries can compress programs
of size s to expected size Hs. However, this is an asymptotic
argument; if we restrict ourselves to programs of size < s for
some fixed sy, finite libraries can approach a compression ratio
of Hs by including more and more components. Doug Gre-
gor suggested calling Theorem [5.2] the Full Employment Theo-
rem for Library Writers, after Andrew Appel’s boon to compiler
writers. Theorem|[5.2]has a straightforward implication: no fi-
nite library can be complete; there are always more useful
components to add. In practice we have a tradeoff between
the utility of larger libraries and the economic cost of produc-
ing them; this suggests the importance of designing libraries
for extensibility.
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A minor change to the above proof yields a similar but slightly
stronger result.

Corollary 5.2. If a problem domain has 0 < H < 1 and honest
distributions, no computably enumerable library can achieve a
compression ratio of H.

PROOF. Repeat the proof of Theorem replacing “finite li-
brary” with “c.e. library.” In particular the choice of a c.e.
library guarantees that the interpreter for ¢ + L is a finite pro-
gram: whenever a library subroutine is required, it can be
generated from the program enumerating the library,. 0O O

We may casually equate “not computably enumerable” with
“requires human creativity.” Corollary[5.2] indicates that the
process of discovering new and useful library components is
not a process that can can be fully automated.

5.2.2  Size of library components.

We now consider how big library components might be. If we
want to achieve the strong reuse vision of “programming by
wiring together large components,” this suggests that compo-
nents ought to be quite large compared to the wiring. The
following theorem sheds light on the conditions when this is
possible.

Let S(n) denote the expected amount of code (in bits) saved
per use of the n' component. We consider the case when
AMn) ~ nHC(n)Hf( ik where ||c(n)|| is the codeword (identifier)
length, and f(n) is a function f € o(n®) for € > 0 that ensures
convergence (cf. Section. This coincides with a Zipf-style
law as observed in practice (Figure[I).

Theorem 5.3. If a library achieves a compression factor of H >
0 in an honest problem domain, then S(n) ~ % o(n®) for any

£>0.
PROOF. Summing over all components, the total code saved
is:

n)Hs+ o(Hs))
—,_/
expected # uses

S(n) =
N~
savings per use

(1—H)s 12)

00
total savings

Dividing through by Hs and taking the limit as s — o, and
substituting A(n) ~ nHC(ﬂ)Hf( L

— 1
,,; nlle(m)]f(n)
Now if S(n) ~ n® for some constant a > 0 then the sum would
diverge. Therefore S(n) is not polynomial in #; in fact for the

sum to converge we must have S(n) < f(n) which means S(n)
behaves asymptotically as

1-H
H

S(n) =

S(n) ~ I_THo(nS)

where o(nf) denotes some subpolynomial function. 0O O
See also Figure 3| Note that if the components in the library

are unique, then S(n) > logn by pigeonhole.

Strong reuse? The interpretation of Theorem [5.3]is fairly in-
tuitive. Roughly it says the savings we can expect per compo-
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Figure 3. Plot of % versus H, indicating how much code is saved, proportionately, per component use. When H — 1
there is almost no reuse; H — 0 coincides with the “strong reuse” ideal of wiring together large components. In between
is weak reuse, with moderate amounts of code drawn from libraries.

nent are linear in the size of the component identifier. Which
is to say, we should expect savings for the n™ component to
grow roughly as log™ n. This is consistent with findings in the
reuse literature that small components are much more likely
to be reused. The important factor here is the multiplier I’TH
As H — 0, this multiplier becomes arbitrarily large. This sug-
gests that “strong reuse” (Section [1)) corresponds to the re-
gion H — 0. For example, if programs in a problem domain
are thought to be solvable by wiring together components that
are (say) 1000 times bigger than the wiring itself, this suggests
I’TH ~10° or H ~ 0.001. The key result is that whether one is
able to achieve strong reuse depends critically on the param-
eter H — which measures how much diversity there is in the
problem domain.

6 Experimental data collection

Preliminary empirical data was collected from three large
Unix installations. The problem domain is not particularly
well-defined, but is rather “the mishmash of things one wants
to do on a typical research Unix machine.” On the SunOS and
Mac OS X machines we located every shared object and used
the unix commands nm or objdump to obtain a listing of the
relocatable symbols (i.e., references to subroutines in shared
libraries). For the Linux machine, a more sophisticated ap-
proach was used that involved disassembling every executable
object and decoding the PLT and GOT tables for shared library
calls. For this reason the Linux data is much more fine-grained
and reliable; for example, our data set for Linux includes the
frequencies of all the x86 machine instructions, in addition to
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almost a half-million subroutines.

Operating System  # Objects # Components

Linux (SuSE) 12136 455716
SunOS 23774 110306
Mac OS X 2334 37677

We counted the number of references to each component,
sorted these by frequency, and this data is plotted in Figure
The observed counts match nicely the asymptotic prediction
made in Section (the family of curves cn~! is shown as dot-
ted lines). To account for machine instructions, which are not
included in the tally for the Mac OS X and SunOS machines
but constitute by far the most frequently occurring software
components, we started numbering the components for these
machines at n = 50. Without this adjustment the rates have a
characteristic “flat top” and then rapidly converge to n~! lines;
this is an artifact of the log-log scale.

The pronounced “steps” in the data for large n occur because
there are many rarely-used subroutines with only a few refer-
ences; this is typical of such plots (see, e.g., [25]]).

Another prediction that may follow from our model is that the
number of distinct components used in a program should ap-
proach a normal distribution: under maximum entropy condi-
tions the use of components is statistically independent, and
so the central limit theorem applies. This is reminiscent of
the Erdos-Kac theorem [8]] that the number of prime factors
of integers converges to a normal distribution. Figure[d]shows
some preliminary results that support this result, drawn from
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Figure 4. Data suggesting a library analogue of the Erdos-Kac theorem. (a) A scatter-plot showing the number of distinct
library subroutines used vs. software size for the Linux RPM data. (b) Histogram for the number of references, normalized
(see text). (c) Histogram only for the inset box of (a), illustrating an Erdos-Kac-style normal distribution for the number of
components used in software. Such plots might provide a useful tool for assessing the extent of reuse vs. ideal predictions
from a model.
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the SuSE Linux data. The number of component references
have been normalized by an estimated variance of 6% = cs?
where s is the program size. Subfigure (c) shows a sugges-
tively shaped distribution for the inset box of (a), a region
where there is good “saturation” of the problem domain with
programs.

Our preliminary data demonstrates a Heaps’ style law for vo-
cabulary growth [[15, §7.5]: the number of unique compo-
nents encountered in examining the first s bytes of the corpus
grows roughly as a power law s* with o ~ 0.8. We have not
found a satisfactory theoretical explanation.

7 Conclusion

We have developed a theoretical model of reuse libraries that
provides good agreement, we feel, with our intuitions, the lit-
erature, and the preliminary experimental data we have col-
lected on reuse on Unix machines. Much of what we have
done has served to emphasize the importance of this one
quantity, H, the entropy rate we associate with a problem do-
main. It determines if we can have strong reuse (H — 0), or
whether we can have weak reuse (0 < H < 1), and how much
code we might be able to reuse from libraries: at most 1 — H.

We have shown that libraries allow us to “compress the in-
compressible,” reducing the size of programs that are Kolmo-
gorov-incompressible by taking advantage of the commonal-
ity exhibited by programs within a problem domain. We have
also shown that libraries are essentially incomplete, and there
will always be room for more useful components in any prob-
lem domain.

The arguments made here are quite general and might adapt
easily to other description systems, for example, the reuse of
abstractions, lemmas and theorems in mathematical proofs.
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A Background
A.1 Asymptotics

Here we recall briefly some facts and notations concerning
asymptotic behaviour of functions and series. For a more de-
tailed exposition we suggest [10].

Asymptotic notations. For positive functions f(n) and g(n),
we make use of these notations for asymptotic behaviour:

1) ~gn) = tim T a3
1) <) = Jim 71— as
f0) <) = Geck. im e as)

The “big-O” style of notation f € o(g) is equivalent to f(n) <
g(n). When we write h(n) ~ g(n) +o(n?) we mean there exists
some function f € o(n?) such that h(n) ~ g(n) + f(n).

Series and their convergence. A series }';7 | g; is convergent
when limy_.c ):?': | a; exists in the standard reals; otherwise it
is divergent. The Harmonic series h, = % is divergent, since
Y ohi=1+%+ 1+ fails to converge.

We shall make use of the following key fact for bounding con-
vergent sequences.
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Fact A.1. Let ay,b, be positive sequences. If ;" | a, converges
and Y, b, diverges, then a, < by.

Proposition is useful to establish a bound on the asymp-
totic growth of a sequence: for example, if ¥, a, must con-

verge, then a, < % since the harmonic series diverges.
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Abstract CGAL [1], the Computational Geometry Algorithms Library, is the
product of a collaborative effort of several sites in Eurapel |s-
Arrangements of planar curves are fundamental structaresm- rael, aiming to provide a generic and robust, yet efficiemile-
putational geometry. Recently, the arrangement packa@set., mentation of widely used geometric data structures andidhgas.
the Computational Geometry Algorithms Library, has been re The library consists of a geometrernel[17, 24], which in turn
designed and re-implemented exploiting several advanaaggm- consists of constant-size non-modifiable geometric primnibb-
ming techniques. The resulting software package, whickstcocts jects (such as points, line segments, triangles, etc.) esdigates
and maintains planar arrangements, is easier to use, todgxded and operations on these objects. On top of the kernel lalyer, t
to adapt to a variety of applications, is more efficient space library consists of a collection of modules, which providepie-
time-wise, and is more robust. The implementation is cotegle mentations of many fundamental geometric data structurdsab

the sense that it handles degenerate input, and it produees e  gorithms. The arrangement package is a part of this layer.
results. In this paper we describe how various programnenp-t

niques were used to accomplish specific tasks within theezgbof The software described in this paper rigorously adapts,c&s d
Computational Geometry in general and Arrangements inqoart CGAL in general, thegeneric programmingparadigm [6], making
lar. A large set of benchmarks assured the successful afiplis extensive use of € class-templates and function-templates. The
of the adverted programming techniques. The results of dl sma generic-programming paradigm uses a formal hierarchy sifratt
sample are reported at the end of this article. requirements on data types referred tocascepts and a set of

components that conform precisely to the specified requrgs,

. . . referred to asnodels
Categories and Subject Descriptors

In software engineeringlesign patternare frequently used to sup-

D.2.11 [Software Architectures]: Patterns; D.1.5 Qbject- ply standard solutions to common problems recurring inveafe

oriented Programming] design. Design patterns supply a systematic high-levetcaop
that focuses on the relations between classes and objatter r

General Terms than the specification of individual components. See theliyo
Gammaet al. [20] for a catalog of the most common design pat-
terns.

Computational geometry, €L, arrangements, generic program-

ming, design patterns While relations between objects in a design pattern arellysua

realized in terms of abstract data types and polymorphisen, d
sign patterns can successfully be applied in generic pnegra
ming as well, as we show in this paper. A good example are
the point-location algorithms supplied by the arrangenpatk-

age. One of the most important operations on arrangements is

1 Introduction

Given a setc of planar curves, tharrangementa (¢) is the sub-
division of the plane induced by the curvesdninto maximally

connected cells. The cells can be O-dimensionaiticey, 1- answerin - ; D ; :
. h - . g thepoint-locationquery: Given a query poing, find
dimensional ¢dge$, or 2-dimensionalfaceg. Theplanar mapof the arrangement cell that contains We supply several point-

4(c) is the embedding of the arrangement as a planar graph, suchocation algorithms, and enable package users to emploplthe
that each arrangement vertex corresponds to a planar @idt,  rithm best suited for their application. To this end, we us
gach edge corresponds to a planar subcurve_ of_ one pf thescurve o strategy design-pattern, which defines a family of algorithms,

in c. Arrangements and planar maps are ubiquitous in computa- gach implemented by a separate class, and we make them inter-
tional geometry, and have numerous applications (e.g. 42p, so changeable. The four point-location classes are:nai ve_poi nt -

many potential users in the aca_demla and in the industry reay b location, which locates the query point naively, by exhaus-
efit from a generic implementation of a complete softwarepge tively scanning all arrangement cellsArr _wal k_al ong.a_l i ne_

that constructs and maintains planar arrangements. poi nt _| ocati on, which simulates a traversal along an imaginary
— . vertical ray emanating from infinity and directed toward thuery
Work reported in this paper has been supported in part by IST noint; arr | andnar ks_poi nt I ocat i on, which uses a set of “land-
Programme of the EU as a Shared-corst RTD (FET Open) Project mark” points, whose locations in the arrangement are kn@wen
under Contract No IST-006413 (ACS - Algorithms for Complex 4 query point, it uses a nearest-neighbor search strugige Ko-

Shapes) and by the Hermann Minkowski — Minerva Center for Ge- tree) to find the nearest landmark and then it traverses thigist
ometry at Tel Aviv University.
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line segment connecting this landmark to the query poimalfy,
theArr trapezoi dal _ri c_poi nt_ | ocati on implements Mulmuley’s
point-location algorithm [29], which is based on the vetide-
composition of the arrangement into pseudo-trapezoidse last
two strategies are more efficient. However, they requirgnore
cessing and consume more space, as they maintain auxibisay d
structures. The first two strategies do not require any ekdta and
operate directly on their associated arrangements.

In classic object-oriented programming, the point-lamagdrocess
can be realized with an abstract base class that providesea pu
virtual function, | ocate(q), which accepts a poing and results
with the arrangement cell containing it. All concrete pdodation
classes inherit from the base class, and all arrangementtalgs
that issue point-location queries use a pointer to an atidhase
object, which actually refers to one of the concrete paicgation
classes. When using generic programming, we rely less @t-inh
itance or virtual functions. Instead, we define a conceptathm
ArrangementPointLocation_2, such that all models of this concept
must supply d ocate() function. All the various point-location
classes model this concept. Note that the concept defirigemo
trace in the actual € code, so from a syntactical point of view,
these classes are completely unrelated. Any generic tigothat
issues point-location queries is implemented as a temp&tame-
terized by a point-location class, which is a model of Menge-
mentPointLocation_2 concept.

In the rest of the paper we show how additional design pattara
exploited in the GAL arrangement package in conjunction with
generic programming techniques. The application of coatiins

of advanced programming techniques is argued to be sytergis
Not only does it make the implementation more generic, it als
improves the quality of the software in all measured aspects

1.1 Related Work

In the classic computational geometry literature two agstions
are usually made to simplify the design and analysis of gé&aene
algorithms: First, inputs are in “general position”. Thstdegen-
erate cases (e.g., three curves intersecting at a commat) poi
the input are precluded. Secondly, operations on real niswhed
accurate results (the “realA®” model, which also assumes that
each basic operation takes constant time). Unfortunatedge as-
sumptions do not hold in practice. Thus, an algorithm im@eted
from a textbook may yield incorrect results, get into an iitéitoop,
or just crash, while running on a degenerate, or nearly degés
input (see [26, 32] for examples). This is one of the problats
dressed successfully byd@L in general and by the €AL arrange-
ment package described here in particular.

The need for robust software implementation of computatige-
ometry algorithms has driven many researchers to develoania
of the classic algorithms that are less susceptible to deganin-
puts over the last decade. At the same time, advances in ¢cempu
algebra enabled the development of efficient softwareriiégsahat
offer exact arithmetic manipulations on unbounded integeatio-
nal numbers (e.g., BP — Gnu’s multi-precision library [4]) and
even algebraic numbers (thed@E[2] library and the numerical fa-
cilities of LEDA [5]). These exaahumber typeserve as fundamen-
tal building-blocks in the robust implementation of manypigetric
algorithms [37].

Keyseret al. [12, 27] implemented an arrangement-construction

module for algebraic curves as part of theabtc and EsoLID li-
braries. However, their implementations make some gemeral
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sition assumptions. ThedDA library [5, 28] includes geometric
facilities that allow the construction and maintenance rodrge-
ments of line segments.

CGAL’s arrangement package was the first complete software-
implementation, designed for constructing arrangemehtsriu-
trary planar curves and supporting operations and quenesich
arrangements. More details on the design and implementafio
the previous versions of the package can be found in [18 \28hy
users (e.g., [11, 14, 21, 25, 31]) have employed the arraegem
package to develop a variety of applications.

In this paper we show how concurrent applications of adwnce
programming techniques improve the quality of theAT arrange-
ment software-package, achieving a software design aiccptd
the generic-programming paradigm that is more modular asg e
to use, and an implementation, which is more extensiblgytatiée,
and efficient.

1.2 Outline

The rest of this paper is organized as follows: Section 2 iges/
the required background ondaL’s arrangement package, intro-
ducing key terms and presenting its architecture. The focceed-
ing sections describe the applications of four differertigie pat-
terns within the generic programming paradigm, nanaelspter,
decorator, observer, andvisitor. These sections detail the pattern
intent, their impact, and implementation in the contextlod ar-
rangement package. In Section 7 we highlight the perforemafic
our methods on various benchmarks. Finally, concludingar&sm
and future-research suggestions are given in Section 8.

2 The Architecture

Figure 1. A portion of an arrangement of circles with some of
the DCEL records that represent it. f is the unbounded face.
The halfedgee (and its twin €) correspond to a circular arc
that connects the verticesv; and v, and separates the facef;
from f,. The predecessors and successors ®and € are also
shown. Note thate together with its predecessor and successor
halfedges form a closed chain representing the inner bounatg
of f1 (lightly shaded). Also note that the facefz (darkly shaded)
has a more complicated structure, as it contains a hole.

The Arrangenent 2<Traits, Deel >1 class-template represents the
planar embedding of a set of (weakkmonotoné planar curves

1CeaL prescribes the suffix for all data structures of planar
objects as a convention.

2A continuous planar curv€ is weakly x-monotoneif every
vertical line intersects it at most once, or it is a verticgment.



that are pairwise disjoint in their interiors. It providésetneces-
sary capabilities for maintaining the planar graph, whisaiat-

ing geometric data with the vertices, edges and faces ofrdgehg
The arrangement is represented usirtpably-connected edge list
(DCEL) — a data structure that enables efficient maintenance of
two-dimensional subdivisions.

The DCEL data-structure represents each curve using a pair of di-
rectedhalfedges one directed from the left endpoint of the curve
to its right endpoint, and the other (itwin halfedge) going in the
opposite direction. The DEL consists of containers oErtices(as-
sociated with planar pointshalfedgesandfaces where halfedges
are used to separate faces and to connect vertices. We gturdger
from each halfedge to the face lying to its left. Moreovetfdédges

are connected in circular lists and form chains, such thadges

of a chain are incident to the same face and wind in a counter-
clockwise direction along its inner boundary (see Figurerlain
illustration). A non simply-connected face stores a corgaiof

whether the curve endpoints are associated with existirange-
ment vertices; see Figure 2 for an illustration of the vagioases.
Note that these insertion functions hardly involve any getrit
operations, if at all. They accept topologically relatedapaeters,
and use them to operate directly on the#2 records, thus saving
algebraic operations, which are especially expensive vhliggmer-
degree curves are involved. Other modification methodslenab
users to split an edge into two, to merge two adjacent edgek, a
to remove an edge from the arrangement.

An important guideline in the design is to decouple the ayeament
representation from the various algorithms that operaté dinus,
non-trivial algorithms that involve geometric operatiars imple-
mented as free (global) functions. For example, we offerea fr
insert() function for theincrementalinsertion of general curvés
computing theizone(see Section 6.2), and another fiesert ()
function for theaggregatednsertion of sets of general curves, using
a sweep-line algorithm. Another important operation impated

holes where each hole is represented by an arbitrary halfedge onas a free function is the computation of theerlayof two arrange-

the clockwise-oriented chain that forms its outer boundahe full
details concerning the €eL are omitted here; see [13, Section 2.2]
for further details and examples.

The Arrangenent 2 class-template should be instantiated with two
objects as follows. (i) A traits class, which provides themetric
functionality, and is tailored to handle a specific familycafves. It
encapsulates implementation details, such as the numbeused,
the coordinate representation, and the geometric or agebom-
putation methods. (ii) A RBEL class, which represents the under-
lying topological data structure, and defaultsato _def aul t _dcel .
Users may extend this defaultdBL implementation, as explained
in Section 3.1, or even supply their owrcBL class, written from
scratch.

The two template parameters enable the separation betkeen t
topological and geometric aspects of the planar subdivisithis
separation is advantageous as it allows users to employatii@age
with their own representation of any special family of cuweith-
out having any expertise in computational geometry. Thewkh
only be capable of supplying the traits methods, which nyaim
volves algebraic computations. Indeed, several of thegupekisers
are not familiar with computational-geometry techniqued algo-
rithms. The separation is enabled by the modular design amabe
niently implemented within the generic-programming payad It
is a key aspect of the package, has been forced since itsstaghys,
and heightened by the new design.

The interface ofarrangenent 2 consists of various methods that
enable the traversal of the arrangement. For example, #ss cl
supplies iterators for its vertices, halfedges and facese Value
types of these iterators anertex_handl e, Hal fedge_handl e and
Face_handl e, respectively. The handle classes themselves supply
methods for local traversals. For example, it is possibledi all
halfedges incident to a specific vertex using\ist ex_handl e, or

to iterate over all halfedges along the boundary of a faceguits
Face_handl e.

Alongside with the traversal methods, the arrangementsclas

also supports several methods that modify the arrangement,

the most important ones being the specialized insertiorc-fun
tions.  The functionsinsert _at face.interior(Cf), insert_
fromleft_vertex(Cu). (the symmetric function nsert _from
right vertex(C u),)andinsert _at vertices(C, ul, u2) can be used
to create an edge that correspond tocanonotone curv€ whose
interior is disjoint from existing edges and vertices, dejieg on
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ments (see [13, Chapter 2] and Section 6.1 below).

2.1 The Traits Class

As mentioned in the previous subsection, theangenent -2 class-
template is parameterized withteits class that defines the ab-
stract interface between the arrangement data structdréharge-
ometric primitives they use. The name “traits class” wasgiby
Myers [30] for a concept of a class that should support aeges-
defined methods, passed as a parameter to another clasatempl
In our case, the geometric traits-class defines the familyuofes
handled. Moreover, details such as the number type usecpto re
resent coordinate values, the type of coordinate systeih (ige,
Cartesian or homogeneous), the algebraic methods usedsxand
traneous data stored with the geometric objects, if preseatall
determined by the traits class and encapsulated within it.

The traits-class concept is factored into a hierarchy oheeficon-
cepts listed in the next paragraph. The refinement hierasopgn-
erated according to the identified minimal requirementsfitbe
traits imposed by different algorithms that operate onrayeanents,
thus alleviating the production of traits classes, andeasing the
usability of the algorithms.

Every model of the traits-class concept must define two tygdes
objects, namely_nonot one_curve_2 andPoint 2. The former rep-
resents arx-monotone curve, and the latter is the type of the end-
points of the curves, representing a point in the plane. Hsehir-
rangementBasicTraits_2 concept lists the minimal set of predicates
on objects of these two types sufficient to enable the omeraro-
vided by theArrangenent -2 class-template itself, and the insertion
of Xx-monotone curves that are also non-intersecting in thériin
ors. Among these predicate are fh@nt-statuspredicate: given an
x-monotone curvé&€ and a pointp, determine whethep is above,
below, or lies orC; and thecompare-to-rightpredicate: given two
x-monotone curve€y, C, that share a common left endpomtde-
termine the relative position of the two curves immediatelyhe
right of p. The set of predicates defined by theangementBa-
sicTraits_2 concept is also sufficient for answering point-location
queries by various strategies, as detailed in the previecton®

3A general curve may not necessarily oenonotone, can in-
tersect the existing arrangement curves, and its insddaation is
unknowna priori.

4The only exception is the “landmarks” strategy, which reesii



@ (b) (c)
Figure 2. The various insertion procedures. The inserteck-monotone curve is drawn with a light dashed line, surrounde by two
solid arrows that represent the pair of twin halfedges addedo the DcEL. Existing vertices are shown as black dots while new vertice
are shown as light dots. Existing halfedges that are affecteby the insertion operations are drawn as dashed arrows. (anserting a
subcurve inside the facef. (b) Inserting a subcurve whose one endpoint corresponds the existing vertexu. (c) Inserting a subcurve
whose both endpoints correspond to the existing verticeg and us.

The construction of an arrangement of general curves regitire”~~~~~~~~ | Arr_default_dcel |- 1>————

refinedArrangementTraits_2 concept. In addition to the point amxel
monotone curve types, a model of the refined concept mustedefin
a third type that represents a general (not necessaritpnotone)
curve in the plane, namedirve 2. An intersection point of the
curves is of typepoi nt 2. In addition, it has to support geomet-
ric constructions, such as subdividing a given curve intops
x-monotone subcurves, computing the intersections betvwwen

Arr_non_cachi ng_segnent _traits_2 |_

[ Arrangenent _2<Traits, Dcel >

{ Arr_non_cachi ng_segnent _basic_traits_2

N

- > 4 ArrangementBasicTraits_2 ‘

given x-monotone curves, splitting akmonotone curve into two

subcurves at a given point in its interior, and merging twa-co { :

tiguous x-monotone portions of the same curve into a single { - }Dl ArrangementTraits.2 ‘
Arr_segnent _traits_2 '

monotone curve.

. . . L. Ar lyli traits_2
All traits-class operations are implemented as functiofeats rperyiinetrarts

(functorg according to GAL’s guidelines. This allows for the ex-
tension of the primitive types above without the need to fiade
the methods that operate on them (see [24] for details onxhe e
tensible kernel). For a detailed specification of the vagiconcept
requirements see [36].

{ Arr_conic_traits_2 }

Figure 3. The main Arrangenent 2 class and its template
parameters. Arrows designate pointers, solid lines direed
through a triangle mark an inheritance or a refinement rela-
tion, and directed dotted lines directed through a triangledes-

We include several traits classes with the public distidsutof . ; .
ignate “is a model of” relation.

CGAL (see Figure 3) as follows. Traits classes for line segments
a traits class that operates on continuous piecewise lme&es,
namely polylines [23], and a traits class that handles satgref
planar algebraic curves of degree 2, namely conic arcs, (€-g. 3 Adapters
lipses, hyperbolas, or parabolas) [35].

The adapter design-pattern ¢onverts the interface of a class into
ExAcus [3] is an ongoing project that aims to provide a set of li-  another interface clients expect. Adapters let classes wmr
braries for efficient and exact algorithms for curves andasas. gether that could not otherwise, because of incompatiléefaces
In particular, it includes GAL-compatible traits-classes for com-  (Gammeaet al.[20]).
puting arrangements of planar algebraic curves of degrem?- (
ics) [10], 3 (cubics) [15] and 4 (quartics) [9]. Another teaclass Adapters manifest themselves in a few places in the arraegem

for conics was developed as part of an initial attempt to isl@a module, the first being a mediator between the arrangemass cl

CGAL kernel that supports curved objects [16]. operations and the traits-class primitive operations. sTthaits
adapter add geometric predicates to the traits class, masdde

a traits class that models the refiredangementLandmarkTraits_2 primitive operations provided by a model of tAerangementBa-

concept. For lack of space, we omit the details here. sicTraits_2 concept. For lack of space we omit the technical details,

5The “non-caching” classes shown in Figure 3, which model which can be found in [19].
the ArrangementBasicTraits_.2 and ArrangementTraits_2 concepts
respectively, directly operate on the kernel segments. irTime
plementation is simple, yet may lead to a cascaded repazemt 3.1 The DCEL Face Extender
of intersection points with exponentially long bit-lengthhich in

turn may drastically increase the time consumption of arétic Another application of an adapter is exhibited in the meidman
operations. The classr segnent _trai ts_2 avoids this cascading  to conveniently extend the topological face-feature of EheeL.

problem by storing extra data with each segment. It achifaster While it is possible to store extra (non-geometric) datahwiite
running times when arrangements with relatively many geetion curves or points by extending their types respectively (seee de-
points are constructed. However, it uses more space. tails in Section 4.1), itis also possible to extend the wetialfedge,
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or face types of the DEL through inheritance. Many times it is de-
sired to associate extra data just with the arrangemerd.f&ae ex-
ample, when an arrangement represents the subdivisioroofdrg
into regions associated with their population density. his tase,
there is no alternative other than to extend theeDface. As this
technique is might be difficult for inexperienced users, \navjgle
the class-templat€ace_ext ended_dcel <FaceDat a>, which extends
each face in therr _def aul t .dcel class with eFaceDat a object.

3.2 Boost Graph Adapters

The BoosTgraph library (BsL; see [33]) is a generic library of
graph algorithms and data structures designed in the sainiteasp
STL. It supports graph algorithms, and as our arrangementsyare e
bedded as planar graphs, it is only natural to extend thellvith

the interface that the 8L expects, and gain the ability to perform
the operations that the@®. supports, such as shortest-path compu-
tation. We adapt aArrangenent 2 instance to a BosTgraph by
providing a set of free functions that operate on the arnavege
features and conform with the relevantBconcepts.

We mention that besides the straightforward adaptatiom;vs-
sociates a vertex with eachdBL vertex and an edge with each
DcCEL edge, we also offer dual adapter, which associates a graph
vertex with each [BEL face, such that two vertices are connected,
iff there is a DCEL halfedge that separates the two corresponding
faces. These representations are useful for many applsatuch

as answering motion-planning queries (see e.g., [25]).

4 Decorators

The decorator design-pattern dttaches additional responsibilities
to an object dynamically. Decorators provide a flexiblerati¢ive
to sub-classing for extending functionali@ammaet al.[20]).

In traditional object-oriented programming, attachinglididnal
functionality to an entire hierarchy of classes, all intieg from

a common (perhaps virtual) base class, referred to as theaom
nent class, requires the introduction of a decorator clagsih-
herits from the base class and stores a pointer to a virtuapoe
nent object. When applying one of the methods to the deapiiaito
first calls the component method, and then performs the soppi-
tary operations. In the arrangement package we apply theatec
design-pattern when we attach auxiliary data to the geacretii-
ties defined by a specific traits clds.

4.1 Meta-Traits Classes

We offer several traits-class decorators, which we refastmeta-

supplied by the base-traits, and only needs to maintain xtra e
data fields. When subdividing a curve intanonotone subcurves,
its data field is copied to the resulting subcurves. Sinyijarhen
splitting anx-monotone curve, its data container is duplicated and
stored with the two resulting subcurves. When twmonotone
curves overlap, the union of their data containers is coetband
stored at the resulting overlapping subcurve.

The Arr _nmerged_curve_data_traits_2<BaseTraits, Data, Merge>
class operates similarly, except that it extends ¥henot one
_curve_2 type with just a single data field. When an overlap occurs,
it uses thawer ge functor, given as a template parameter, to merge
the data fields of the two overlappingmonotone curves, and
stores the result with the resulting overlapping subcurve.

4.2 Arrangements with History

Arr_consol i dated_curve_data_traits_2
<BaseTraits, BaseTraits::Curve_2*>

[warars ]

Curve 2 +—F——<

Arrangenent _2
<BaseTrai ts, Dcel >

S

Arrangenent _wi th_history_2 }

<BaseTraits, Dcel >

Cur ve_edges_obser ver

‘ ArrangementTraits_2 ‘

Figure 4. TheArr angement wi t h_hi st or y_2 decorator. An ar-
row with a rhombus-shaped tail mean that a class stores a con-
tainer of objects of the pointed type.

Another major component of thedL arrangement package is
theArrangenent wi t h_hi st ory_2<BaseTrai t s, Dcel > class-template,
which maintains a planar arrangement of general curveslewnhi
maintaining its construction history. The input curvest inaluce
the arrangement are split inkemonotone subcurves that are pair-
wise disjoint in their interior. These subcurves are asgediwith
the arrangement halfedges. In particular, each edge siqresiter

to the input curve associated with it, (or a container of fEr®
in case the edge is associated with an overlapping sectisevef
eral curves), while each subcurve stores the set of edgeduites.
Users can traverse through the origin curves of each amaege
edge, or iterate on all edges induced by a given input curve.

The Arrangenent wi th_history_2 class is not more than a simple
decorator for thex rangenent 2, as shown in Figure 4. It inher-
its from an arrangement class that is parameterized by thsotio
dated curve-data traits (see Section 4.1), where the eateatgpe
is a pointer to aBaseTraits:: Curve2 object. Thus, the pointers
from each edge to its origin curve(s) are automatically hadied.

traits classes. Recall that the traits classes do not have a COMMONTKHe cross-pointers between input curves and arrangemees ede

base class, but they all model theangementTraits_2 concept. The
meta-traits decorators are parameterized by such a tla#ts cThey
inherit some of the base-traits class functors, while adirg oth-
ers exploiting the auxiliary data maintained with the getiio@b-
jects.

The Arr _consol i dated_curve_data_traits_2<BaseTraits, Data>
class inherits itsurve_2 and X_.nonot one_curve 2 types from the
respective types of the base-traits class, while extentiegurve
with an additionaldata field, and thex-monotone curve with a
container of data fields. It relies on the geometric openatio

6This is a straightforward alternative to extending theg ver-
tices and halfedges (see Section 3.1).
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maintained using aobserver(see the next section) that keeps track
of each change that involves an arrangement edge.

Tracing back the curve (or curves) that induced an arrangeme
edge is essential in a variety of applications that use genaents,
such as robot motion planning (see e.g., [25]).

5 Observers

The observer design-pattern defines a one-to-many dependency
between objects, so that when one object changes state, all
its dependents are notified and updated automaticéBamma
et al.[20]).



Observers play a significant role in the new design of thengea
ment package. They serve many different needs with a single u
fied approach, as multiple observers can be attached to the sa
arrangement instance. An important set of observer classes
one employed by some of tip@int-locationstrategies that maintain
auxiliary data-structures (see Section 1). Another imgdrteason
for supporting observers of arrangements is to allow useirgtto-
duce their own observer classes. This is not just a conveajdmut
crucial to the usability of the package, as it might be they ovey
for providing certain output — data that should be bound vttt
topological features of the arrangement and is availaldieduring
construction. This is explained in Subsection 5.3. In thfdng
subsections we give a detailed description of the notificathech-
anism implemented via the observer design-pattern.

5.1 The Notification Mechanism

The Arr _observer <Arrangenent > class-template is parameterized
with an arrangement class. It stores a pointer to an arraggiem
object, and is capable of receiving notifications just befstruc-
tural change occurs in the arrangement and immediatelysaftd a
change takes place. Hence, each notification is comprisagair
of “before” and “after” functions. Therr _obser ver <Arr angenent >
class-template serves as a base class for other obserssesiand
defines a set of virtual notification functions, giving thelnaade-
fault empty implementation. Naturally, one of the objeesivis to
minimize the observer interface, that is, identifying thaimal set
of event points, while capturing all possible changes thatree-
ments can undergo.

The set of notification functions can be divided into thretegaries
as follows (see [36] for a detailed specification): (i) Netif of
changes that affect the entire topological structure. Sinamnges
occur when the arrangement is cleared or when it is assigitad w
the contents of another arrangement. (ii) Notifiers of allobange
to the topological structure. Among these changes are taion
of a new vertex, the splitting of an edge, and the formatioa éw
hole inside a face. (iii) Notifiers of a global change ingdtby a
free function, and called by the free function (e.g., inceatal and
aggregate insert; see Section 2). Itis required that nd-adation
queries (or any other queries for that matter) are issueddsst the
calls to the “before” and “after” functions of this pdir.

Each arrangement object stores a list of pointer& ta observer
objects, and whenever one of the structural changes liste first
two categories above is about to take place, the arrangesbgstt
performs dorward traversal of this list and invokes the appropriate
function of each observer. After the change has taken pheceli-
server list is traversed inlaackwardmanner (from tail to head) and
the appropriate notification function is invoked for eaclsatver.
This allows for the nesting of observer objects. The obsdise
is not made public, and can only be accessed bythebser ver
class. A free function may choose to trigger a similar naifimn,
which falls under the third category above.

A pointer to a valid arrangement object must be supplied & th
constructor of amr r _observer object. The newly created observer
object adds itself to the observer list of the arrangememmRhat
moment on, it starts receiving notifications whenever tiseciated
arrangement object changes. In case the new observerdsexdtto
a non-empty arrangement, its constructor may extract tleeaet

"This constraint can improve the efficiency of the mainteeanc
of auxiliary data-structures for the relevant point-lacatstrate-
gies, as explained in the next subsection.
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data from the non-empty arrangement using various traveret-
ods offered by the public interface of tiaer angenment 2 class, and
update any internal data stored in the observer.

{ Arrangenent _2<Traits, Dcel > }C [ Arr_observer <Arr angenent > }
P

{ Arr_nai ve_point_| ocation }——T"D'w ArrangementPointLocation_2 ‘

{ Arr_wal k_al ong_l i ne_poi nt _| ocati on }

[ Arr_trapezoidal _ric_point_location | ] [ Arr_trapezoidal _ric_observer

[ Arr_| andmar ks_obser ver

Figure 5. The point-location classes and the notification nmh-
anism.

[ Arr_l andmar ks_poi nt _| ocati on

5.2 Point-Location Observers

As mentioned in Section 1, thendmarksand thetrapezoidal
point-location classes maintain auxiliary data strugurelrhese
strategies are characterized by very efficient query tiniéess ef-
ficient preprocessing time and space. Naturally, thestegies ex-
hibit better overall performance when the number of upditéise
arrangement is relatively small compared to the numbersofeid
queries. Nevertheless, when the arrangement is modifiedidbses
that implement these point-location strategies must kisejp &ux-
iliary data structure synchronized with their attachecdagement-
instance.

To this end, the landmarks point-location class and thesizaiplal
point-location class define the nested observer classetiexit
from Arr _observer, and are used to receive notifications whenever
the arrangement is modified (see Figure 3). For example,iantar
of the landmarks strategy uses the arrangement verticesnds |
marks, so whenever a new vertex is created (by the inserfian o
new edge or by the splitting of an existing edge), it shouldrbe
serted to the nearest-neighbor search structure maidtiynehe
landmarks class. The usage of the notification mechanisnesnak
it possible to associate several point-location objecth thie same
arrangement simultaneously.

5.3 User-defined Observers

In addition to the point-location observer classes, usansiicherit
their own observer classes fromr observer and use the notifi-
cation mechanism for a variety of purposes, such as dyndgnica
maintaining the extra data they store with the arrangenestufes.
Assume, for example, users associate some additional etzteds
with the arrangement faces (see Section 3.1). In this caseap-
plication needs to be notified whenever a new face is creatsi (
from another face) or deleted (merged with another facej,ran
ceive a handle to the edge whose insertion (or deletion.ecesp
tively) causes this change. An appropriately written obmers
ideal for this purpose.

6 Visitors

Thevisitor design-patternrepresents an operation to be performed
on an object or on the elements of an object structure. Vsétiow

the definition of new operations without changing the clasgghe
elements on which they operat&ammaet al.[20]).



Arrangements have numerous applications, and differeplicap
tions may require distinct and unrelated operations to bepeed
on arrangements. Each of these operations may treat diffele-
ments of the arrangement data-structure differently uaisgbset
of related operations. Implementing all these operatioitisinvthe
arrangement class and distributing all the operation sslz®oss
the various elements of the arrangement data structurs tead
“polluted” system that is hard to understand, use, and ra@nT he
BGL, for example, uses visitors [33, Section 12.3] to overcame t
problem when extending its graph algorithms.

In the arrangement package we use visitors to implement gemm
algorithms that are based on a common algorithmic infrasire.
We have identified two main sets of algorithms: Algorithmsezh
on the sweep-line framework and algorithms based on the-zone
computation framework. Thus, we provide two class-tengslat
namely Sweep_l i ne2 and Arrangenent zone_2, which implement
these two fundamental algorithmic procedures common tdivtbe
families of algorithms. Specific algorithms are implemeias vis-
itor classes that receive notifications of the events hanhbdiethe
basic procedure and can construct their output structuresr@-
ingly. The main benefit we gain from this design is a centealjz
reusable and easy to maintain code. Moreover, users mayaiid t
own sweep-based (or zone-based) algorithms, as the imptame
tion of such an algorithm reduces to implementing an apjeitgr
visitor class.

6.1 The Generic Sweep-Line Algorithm

Sweeping the plane with a line is one of the most fundamental
paradigms in Computational Geometry. The famsugep-line
algorithm of Bentley and Ottmann [8] was originally formidd

for sets of non-vertical line segments, with the “generaditian”
assumptions that no three segments intersect at a commonh poi
and no two segments overlap. An imaginary vertical line is@w
over the input set from left to right, transforming the stativo-
dimensional problem into a dynamic one-dimensional oneeakh
time during the sweep a subset of the input segments intdtgec
vertical line in a certain order. The order of the segmenty ma
change as the line moves along taxis, implying a change in the
topology of the arrangement, only at a finite numbegwdnt points
namely intersection points of two segments and left endpain
right endpoints of segments. The event points, hamely segme
endpoints and all intersection points that have already deszov-
ered, are stored in a dynamic event queue, nameX tsgucture

in an xy-lexicographic order, while the ordered sequence of seg-
ments intersecting the imaginary vertical line is stored dynamic
structure called th¥ -structure Both structures are maintained as
balanced binary trees.

The  Sweep.ine_2<Traits, Event, Subcurve, Visitor> class-
template implements a generic sweep-line algorithm that ca
handle any set of arbitrarg-monotone curves [34], contain-
ing all possible kinds of degeneracies [13, Section 2.1]8, [2

X-monotone curve (represented asxaronot one_ curve_2 object)
whose interior is disjoint from all other subcurves at therent lo-
cation of the sweep line (it may intersect undiscovered suss

as the sweep line advances). These two auxiliary types tise s
additional data members, needed internally by the sweepaligo-
rithm, and are not exposed to external users. However, gi®wi
class may extend these types by inheritingeaent class and a
Subcurve class from the respective base classes and using the ex-
tended types to initialize the sweep-line template.

During the sweep-line process the event objects indfstructure
are sorted lexicographically and the subcurve objectstaredin
theY-structure. Thesweep_l i ne2 class performs only the very ba-
sic operations of maintaining th¢-structure and th&-structure,
while the visitor class is responsible for producing theiatbutput
of the algorithm. Whenever the sweep-line class handleveamt.e
it sends a notification to its visitor, with the relevaient object
and thesubcur ve objects incident to i®. This way the sweep-line
visitor is capable of attaching auxiliary data members ashdirey
functionality to the event and subcurve objects. It can also-
struct the output accordingly.

It should be mentioned that Bartusch&tal. [7] made an initial
attempt to provide a generic sweep-line algorithm in tieoh li-
brary. They offer a class that couples a sweep-traits clattsav
visitor. However, in their implementation the traits cléssespon-
sible for performing the entire sweep-line algorithm, wdes our
class performs the sweep-line process by itself, and onjyires a
traits class that supplies a small set of geometric priwstiv

A simple sweep-line visitor class is used for reporting alérsec-
tion points induced by a set of input cun/&g his visitor does not
require storing any auxiliary data structures with eventsith sub-
curves. The defaulivent _base andSubcur ve_base types are used to
instantiate the sweep-line template. The visitor simplyorés an
event pointp, if it has more than a single incident subcurve.

As mentioned above, a key operation implemented with thefid
a sweep-line visitor is the construction of & BL that corresponds
to the arrangement of a set of input curves. The visitor dtatiss
case is more complicated, as it needs to store extra datathrgth
subcurves and the events as follows. The event class istedday

a handle of a BEL vertex that corresponds to the event point. As
long as the vertex has not been created yet, the handle i&dinva
The subcurve class is extended by a pointer to an eventiqigetd
that corresponds to the left endpoint of the subcurve. When p
cessing an event poimm, it is possible to go over all subcurves such
that p is their right endpoint (so they lie to the left @) and use
this auxiliary data to insert the subcurves into the arrameyg us-
ing one of the specialized insertion methods (see Sectidn 23ct,
additional information, stored with each subcurve, helegqm-
ing the insertion in the most efficient manner, utilizingalhilable
geometric and topological information. For lack of space,amit
the related technical details here.

Section 10.7], using a small set of geometric predicates and Another operation closely related to the construction of @D

constructions involving the curves. Theaits parameter should
be instantiated with a model of th&rangementTraits_2 concept
(see Section 2.1). Thésitor parameter should be a model of the
SweeplLineVisitor_2 concept, whose functionality is explained in
details next.

TheSweep. i ne_2 class uses two auxiliary data typesent _ base,

which stores oi nt 2 object representing the coordinates of an
event point, andsubcurve_base, associated with a portion of an
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structure from scratch is the aggregated insertion of neweslinto
anexistingarrangement and efficiently updating an existingeR
structure. In this case we have to sweep over a consolidateaf s

8The visitor accepts two iterators defining the range of iatd
subcurves in th&-structure, so it may also access the neighboring
subcurves from above and below.

9This operation is indirectly related to arrangements, Bsiih-
plemented using the sweep-line framework.



curves comprised of all subcurves associated with exidliogL
edges, and the set of new curvesOur goal is to discover the inter-
sections involving the new curves and to update the exifiogL
accordingly. We first define a meta-traits class that exté¢nes-
monotone curve type (see [19] for details) with a pointer toe
responding [@EL halfedge (this pointer will be null for the newly
inserted curves}? This way we can easily identify events that in-
volve only existing subcurves, which can be ignored, andlgan
only those events involving the newly inserted curves. VMem-
dling such events, we should insert new edge pairs into theLD
representing the subcurves ©of In addition, if we locate an inter-
section between a new curve and an existing subcurve in tt&.D
we should split the corresponding edges at the interseptiont to
form two halfedge pairs. This operation is elementary akeéda
constant time.

A fundamental operation that is straightforwardly implenes us-
ing a sweep-line visitor is the overlay of two arrangemegiigen as

a “blue” DceL and a “red” DceL. The major added difficulty over
the previously mentioned visitors is the need to update $awe-
ture and face information. Let us assume that each of tha-inpu
arrangement faces is associated with some data object &ee S
tion 3.1). If we put our arrangements one on top of the otherget

an arrangement, whose faces correspond to overlappingnsegf
the blue and red faces. We would like to construct an outprg 1D
whose faces are associated with the corresponding pailseoéhd
red data objects. We do so by sweeping through a consolidated
of “blue” and “red” subcurves. As explained above, it is cement

to use a meta-traits class that extendsxmeonotone curves with

a color identifier BLUE or RED in our case) and a halfedge pointer.
This way we can ignore “monochromatic” intersections angh-co
pute only the red—blue intersection points (or overlapgg dverlay
visitor is parameterized by an overlay-traits class, wiiefines the
merge operations between “red” and “bluetBvL features.

o

L Arrangenent _2<Traits, Dcel > }

ArrangementZoneVisitor_2 ‘

ek insert (arr, cv);
Nl (incremental insertion)
Sweep_| i ne_2<Traits, Event,

Suleurve. Vi o & @i >}—>‘ SweepLineVisitor_2

insert (arr, begin, end);
(aggregated insertion)

overlay (arrl, arr2, J

res_arr);

Arrangenent _zone_2
<Arrangenent, Vi si tor>

[ Arr_inc_insert_zone_visitor

—[ Arr_insertion_visitor

4[ Arr_overlay_visitor

Figure 6. The free functions that are implemented with the adl
of visitor classes.

6.2 Zone-Computation Visitors

Many applications can make use of the following operatioive®
an arrangement and anx-monotone curve€C, compute thezone
of Cin 4. That is, identify all arrangement cells that the curve

101t s also possible for the visitor to extend thecur ve type, but
if we attach the auxiliary data at the traits-class level ae bene-
fit from giving more efficient implementations of some traitass
functions. For example, we do not have to compute intersesti
between two existing DEL subcurves.
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crosses. The zone can be computed by locating the left emtdgpfoi
Cinthe arrangement and then “walking” along the curve toitdjetr
endpoint, keeping track of the vertices, edges and facesedoon
the way (see for example [13, Section 8.3] for the computadid
the zone of a line in an arrangement of lines).

The primary usage for the zone-computation algorithm isitihe
cremental insertion of ar-monotone curve into the arrangement.
However, it is sometimes necessary to compute the zone ava cu
in an arrangement without actually inserting it. In otheses the
entire zone is not required: Suppose we wish to check whether
given curve passes through an existing arrangement veftexch

a vertex exists, the process can be terminated as soon asrtbr v
is located.

While the sweep-line algorithm operates on a set of ingut
monotone curves, and its visitors can use the notificatioes te-
ceive to construct their output structures, the zone-caatjoun al-
gorithm operates on an arrangement object, and its visitag
modify the same arrangement instance as the computation pro
gresses. This makes the interaction of the main class veithist-

tors slightly more intricate.

TheArrangement zone_2<Arr angenent, Vi si t or > class-template im-
plements a generic zone-computation algorithm. It is patam
ized by an arrangement class and by a visitor class. Givenva cu
C, the zone visitor is notified whenever a maximal subcutvef

C is found. The interior of every reported subcurve does net co
incide with any arrangement vertex or edge and lies withiace f
f. The arrangement features that define the subcurve endoit
also reported. A similar notification is issued wheneverlacawe

C that overlaps an arrangement edge is detected. In both, ¢hses
visitor returns a pair comprised of a halfedge handle andaidzm
flag as a result. In case the visitor inserts the subcGrigto the
arrangement, it returns a handle to the newly created edgle- O
erwise, it returns an invalid handle. The Boolean valuedatts
whether the zone-computation process should terminateis—sth
convenient for gaining efficiency in some applications.

The visitor classArr _i nc_i nsert zone_vi sitor 2 performs the in-
cremental insertion of akrmonotone curve. It implements the two
functions described above to insert the generated sutsbywsplit-
ting the halfedges intersected by the curve and using treazed
insertion functions. Other zone visitors are even easiémfde-
ment.

7 Experiments

A user of the package has to select the appropriate compament
many categories (e.g., number type, geometric kernetstctass,
end point-location strategy). For each selection the wssefféred
many options. The use of generic programming enables this fle
ibility. However, it induces a vast number of configuratidhat
must be tested, verified, and tuned. We have developed a-bench
marking toolkit that automatically generates all the reggdiconfig-
urations and measures the performance of each configur@tien
set of inputs. Naturally, we had to restrict ourselves ardiph just
the most efficient configurations for each traits class. abindi-
cates the time (in seconds) it took to construct arrangesradntar-
ious curve typesising exact computationgor each traits class we
have an input file containing many degeneracies (denDegh)
and a randomly generated input file (denoRa&hd). The results,
produced by experiments conducted on a Pentium 1.8 GHz|\clea
show the major improvement in performance that the package h



undergone from the last public release @ AL (version 3.1) to the
current internal release (version 3.2).

Table 1. Time consumption in seconds of the construction of
arrangements of various curve types. The number of input
curves and the dimensions of the resulting arrangements are
also shown.

Name| C | V | E | F [ 31 [ 32
Segments

Degn. 104 1504 2704 1202 | 0.170 | 0.083

Rand. 100 1129 1958 831 0.160| 0.041
Polylines

Degn. 10 112 204 94 0.081| 0.020

Rand. 10 1508 2923 1417 | 0.769| 0.223

Conics
Degn. 41 507 1042 537 2.970| 0.647
Rand. 30 677 1303 628 118.0| 18.2

The reimplemented package is at least twice as efficienteaslth
version (GsAL 3.1) in all cases, and as much as six times more ef-
ficient in some cases. The main contribution to the improverise
due to the reduction in the number of calls to geometric djmera
(provided by the traits class). The effect of this reductimreases
with the increase in time consumption of the geometric dpmra
Thus, construction of arrangements of conic arcs exhibés$argest
improvement. Figure 7 shows the arrangement of tieaClogo.

It consists of 34 circles and 425 line segments. It took lebbsds

to construct the arrangement on the 1.8 GHz Pentium PC uséng t
aggregate insertion method.

0N

a0 ( 77— D

Figure 7. The arrangement of theCGAL logo.
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8 Conclusions

We show how our arrangement package can be used with vari-
ous components and different underlying algorithms that loa
plugged in using the appropriate traits classes. Users mlagts
the configuration that is most suitable for their applicatimm the
variety offered in GAL or in its accompanying software libraries,
or implement their own traits class. Switching betweenedéht
traits classes typically involves just a minor change ofva liees

of code.

We have shown how careful software design based on the generi
programming paradigm makes it easier to adapt existingstrai
classes or even to develop new ones. We believe that siradhr t
niques can be employed in other software packages from diier
ciplines as well.
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Abstract

Reference counting has been used and described in abunifsiace
present novel ideas aimed at class implementations inryilwa-
sign: (1) In library design, generic classes can have vigrisize,
such that an optimal decision for or against reference cogiis
not possible. Wapostponethis decision to the place of class use.
(2) In a context, where equality comparison for the case o&kty
is expensive, e.g., for exact algebraic number represensatwe

unify representationehenever equality is detected, thus effectively

memoizing equality tests. We explain an efficient impleragah
based on an union-find data structure. (3) Reference cauatid
polymorphic class hierarchiesan be combined reusing the pointer
in the handle class for the polymorphism. A policy-basedegien
C++ solution realizes all ideasstandardallocators manage all dy-
namic memory.

Categories and Subject Descriptors

D.1.m [Programming Techniqueg: Miscellaneous

General Terms

software library design

1 Introduction

Reference counting has been used and described in abundémece
principle idea is that a dynamically managed resource &rdlok
number of its users in a reference counter. When the couchesa
zero the resource can be released.

In the context of @+, reference counting is frequently presented

for smart pointers and string classes; in both cases mamalyin
namically allocated memory. | am interested in the prinlcigay it
is used in string classes. But, let me contrast it to its usariart
pointers first.

Smart pointers are commonly presented as a solution for mwne

ship and resource management problems that plair-£pGinters
have with dynamically allocated memory. They often presehe
look of reference semantic, at least with (overloaded imgleta-
tions of) theoperator->() and operator*() Because of that
they offer less opportunities for encapsulation and ptaiec For
example, the copy-on-write strategy for achieving valuaaics
for mutable, reference-counted objects is not easy toze=ali

The use of reference counting in common string classes i& mot coordinate number type is one prime example where a generic
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vated by the fact that strings are copied often and are yss#ati-
ciently long, such that reference counting works as an dpéition
technique. Copying strings becomes extremely efficientfeicost
of a small overhead elsewhere. For strings, this cost iscpdatly
negligible since string classes use dynamic memory anyotge(-
wise the main efficiency concern for reference countingpidally,
string classes have value semantics. Reference countagiis-
plementation detail that does not affect the observabéefate. We
call the class that contains the point@mndle clasgin distinction to
smart pointer classegollowing the convention from Murray [16],
Mehlhorn, and Naher [14, Sect. 13.7].

String implementations offer their functionality in therttthe class,
e.g., with member functions, while smart pointers referi® tep-
resentation class. For example, the length of a strirscsize()

while the size of some smart-pointed objegissize() . Switch-
ing a class to a handle design allows to reuse existing cosklm
that class while switching to smart pointers requires cdamges.

Postpone the Decision

As a library designer, | am particularly interested in théirojza-
tion potential of reference counting for classes in a Iijaratow-
ever, the effectiveness is not clear for a library developke effec-
tiveness depends on the cost for copying (e.g., propolttionie
size of the object) versus the cost for dynamic memory atiooa
plus reference count increments, decrements, and adalispace
consumption. In addition to thesgatic costswe have thelynamic
behavior of the program; how often is the object copied corgba
to the other operations?

For conventional libraries, the static cost for referengenting is
often conclusive to decide for or against reference cogntifery
small objects are never reference-counted and sufficidattye
ones always, because for them the efficiency loss would beva fe
percent at most. In contrast, for generic libraries withapaeter-
ized objects, the static cost is no longer (easily) iderttifian the
library itself.

The library designer cannot decide the use of referenceticgun
Instead, the library user can and should decide. To suppisrt t
| present here a solution that a library designer writes geabb
once, parameterized with a policy template parameter #latts
between the two options.

| am interested in geometric algorithms. To implement them r
bustly yet efficiently, we use exact arithmetic as well astitap
point arithmetic with controlled rounding errors. Fleityi in the



2D point class can be quite large, better using referencateou
ing, or very small, better not using reference countingyeetvely.
Schirra measures the effect of many such choices in his gxten
study [17].

Unify Representations

Exact arithmetic that deals with roots, or algebraic nurabar
general, has the interesting asymmetry that detectingliggis
much more costly than detecting inequality. This holds faus
tions based on separation bounds, such@BAreals [14, 18] and
CoRE[11], as well as for symbolic solutions.

Exact arithmetic number types use reference counting lsecau
based on arbitrary precision integers, they are almostyaheage.

Assume we detect (costly) that two numbers are equal, then we

can apply the following optimization: We drop one of the eepr
sentations and link its handle to the other (by observabteder
identical) representation. The next equality comparisbthese
two handles detects the identical representation and inatebygl
returns.

Of course, this optimization applies to other objects ad.wels
effective if (1) the equality test is expensive enough tdifysome
additional bookkeeping, (2) sufficiently many equal but iatsn-
tical objects are tested for equality, and (3) they are testere
than once. Itis a quite clever variant of memoization. Coragdo
caching it has little overhead in bookkeeping and no isstitifee
time or capacity of the cache. Note that it memoizes only kEgua
not inequality, which is particularly clever for the exacitlametic
example where the memoized result is the expensive one. IBemp
mentary, exact representations of algebraic numbers siedsolat-
ing intervals would refine these intervals to be disjointtfte case
of inequality and then memoize those refined intervals.

We cannot just drop one representation if potentially otteerdles
point to it as well. Reference counting protects us from tilgde

it, but we would like to have the other handles also profit friwa
change of representation. The problem can be cast into the we
known union-find problem. Essentially, the old represeotagets

a pointer to the new representation and the handles follmettain

of pointers in the next query. Two optimizations are neagssa
make it efficient, explained in detail in Section 3.

We use the policy class mentioned above to select now betthieen
following three options: no reference counting, reguldemence
counting, and reference counting with the union-find optation
for the equality comparison.

Class Hierarchies and Other Design Options

Reference counting is usually explained for a single repres
tion class, yet, a representation class hierarchy worksedis Whe
pointer in the handle is then a pointer to the base class tggde a
points to derived objects. However, some technical machiise
needed to really combine it elegantly with the other orthago
choices.

Value semantics is not immediately available with refeeeoount-
ing. One solution is to make objects non-mutable (atomicjotAer
solution is the copy-on-write strategy, which is suppoitedur de-
sign as well. Lastly, one can choose to adopt reference saman
instead.
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For memory allocation, we offer a template parameter foraa-st
dard allocator. It will be used for the single representatitass as
well as for the representation class hierarchy.

We need to answer the question where to put the reference. coun
Theintrusivesolution places the reference counter in the represen-
tation class. Non-intrusive solutions allocate a sepacatenter,
e.g., adding a second pointer to the handle or a forwardimnggro
from the counter to the representation class. Flexibititthis ques-
tion is relevant for generic smart pointers, but we aim atalip
designers who develop representation classes. So, weelio®s
intrusive method for its obvious advantages of smaller lowad,
which are also documented in the runtime benchmarks reglorte
for the BoosT smart pointer library. Of course, we offer conve-
nient ways to add the reference counter easily.

Paper Outline

The contribution of this paper, besides the novel ideascearete
solution to get all aspects in one coherent design that isteasse.
However, the different aspects interact in non-trivial waynd the
final classes are quite intricate. Therefore, | start withesentation
of two examples corresponding to the two main uses of thgydgsi
either with a single representation classfiomorphic ugeor with

a class hierarchypplymorphic usg After that, | will present a so-
lution that covers the monomorphic use, and explain the gémn
necessary to handle the polymorphic use. For completetiess,
final solution is in the appendix. Still, several details amitted
here that do not contribute to the understanding of the desigl
its realization, such as an own namespace, additional rcmbsts,
precondition checks, etc., and names have been changetemd s
ened for the presentation here compared to the implementditat
we use in our EAcus C++ libraries, which are releasédnd can
be studied. Before presenting the example uses, | giveemer
to related work and introduce the union-find data structunctits
application here.

2 Related Work

| can trace the origins of our handle-representation implesar
tion back to LEDA[14, Sect. 13.7], the € Library of Efficient
Data Types and Algorithms. HDA provides two base classes;
handle _base for deriving handle types, anighndle _rep for de-
riving representations. It is a non-templated solutiorhwiterhead
implied by a virtual destructor. The solution irEbA has since then
improved to a templated solution.

Koenig and Moo present two plain handle implementations,ion
trusive and one non-intrusive [13, Chap. 6,7]. All handlassks
look similar. Yet, differences can be seen, for examplehads-
signment operator, which shows great similarities betwémenig
and Moo’s solution, [EDA’s and ours, in that it increments one rep-
resentation before decrementing the other, elegantlydaxgiany
special case handling of the self-assignment problem.

CaAL, the Computational Geometry Algorithms Librarys, 12],
uses a templated handle-representation design from thenieg
(inspired by LEDA’s experience). Initially, all classes in the geomet-
ric kernel were reference-counted. Schirra’s study [1Fificmed

Lhttp://www.boost.org/libs/smart_ptr/smart_ptr.
htm

2htp:/iwww.mpi-inf.mpg.de/EXACUS/

Shitp:/www.cgal.org/
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from left to right: Two sets, one set after UNI ON( 1, 6) , the
same set aftef~1 ND( 4) . The dashed arrows show the relinking
caused byFI ND(4) .

that this penalized instantiations with small number typ&gar-
allel series of kernel objects was introduced and later dredle-
representation design refined to merge these implememsatio

When we started in 2001 thexB&cus project, Efficient and Ex-
act Algorithms for Curves and Surfac§®, | developed the de-
sign presented here. Later in the project, the demand faustipg
class hierarchies came up. We compute the arrangementdricgia
in space by projecting silhouette curves and pairwise $etetion
curves into the plane [3]. Silhouette curves are degree tge-a
braic curves (conics) and intersection curves are (spedegree
four algebraic curves. The difference between these cuypest
is essential for the correctness and efficiency of our smiutiThe
natural design solution is a polymorphic class hierarchy.

[ ptr_ p——™[ref _count

[ ptr_ p———™Jref_count
Ptr() rep.

— PO [union_sizel
parent
rep.

(Crep.

ptr()

Figure 2. Layout of the handle-representation according-teh

different policies: (left) In-place layout without explicit pointer
stored nor dynamically allocated memory. (middle) Conven-
tional invasive layout of reference counter with represerdtion.

(right) Conventional layout enhanced with a counter for the
union size and a parent pointer.

intrusive reference countingTheir proposal is in the process for
the next G+ standardization.

3 Union-Find Optimization

A union-find data structure (a.k.a. disjoint sets [5] or i@ [14])
maintains a partition for a sét of n keys and a unique representa-
tive p(A) for each sef in the partition. It provides two operations:
(1) Forx € K, FIND(X) returns the unique representatjweX) for
the setX in the partition that contains. (2) For two setsX and
Y, in the partition, WioN(p(X),p(Y)) replaces the two sets with
the new seX UY in the partition with a corresponding new unique
representative(XUY).

C++ programming idioms for handle classes, smart pointers, and An optimal implementation represents the sets as rooted tith

reference counting can be found in many+Qext books, rang-
ing from introductions to expert discussions. The olderkbbg
Coplien [4] introduces reference-counted handles, ineuand
non-intrusive, as well as a smart pointer for the examplesifiag
class. The older book by Murray [16] contains a descriptibn o
a string class that uses the handle-representation desfgnence
counting, and copy-on-write. Horstmann offer an earliesatlip-
tion of smart pointers with reference counting in#J9]. Meyers
[15, Item 28 & 29] offers a more basic discussion of smart {EB
and intrusive and non-intrusive reference counting. Stirop dis-
cusses a reference-counted string class and a handlseataton
design briefly [20, Sect. 15.7]. Josuttis sketches a smantgro
implementation with reference counting to address the topres
of reference semantics for element storage in standardicent
types [10, Sect. 6.8]

Vandevoorde and Josuttis describe smart pointers anderefer
counting [21]. For reference counting, they introduce agyatlass

for the counter, whether it can be intrusive or not, and wéeih

needs to protect against concurrent access with threadsthémn
policy handles deallocation.

Alexandrescu dedicates a chapter in his book [1, Chap. #htots
pointers available in his Loki library. He discusses owhgrss-
sues, implicit conversion, test and comparison operaaoic multi-
threading issues. He supports polymorphism and conseglieas
a policy class that handles the issue of cloning a represemnta
He mentions copy-on-write, but explains that smart pomsge the
wrong place to realize it, since the essential distinctietween
read-only and write accesses is not possible.

The handle-representation design is an instance of thg atxern

the keys as nodes and the root node as unique represenfhtiee.
FIND-operation follows the parent pointers and returns the root
node. The WioN-operation links one root node under the other
root node. This implementation becomes worst-case opifinath
operations are made a bit smarter: Thed~operation has cost pro-
portional to the path length to the root node. We perfpath com-
pressioni.e., each node traversed during a find will be re-linked to
point directly to the root node. This does not change theafsiis
FIND-operation, but subsequeniND-operations can be faster. The
UNION-operation has constant cost, but it increases the patthieng
for the tree linked under the other root node. We usdittkéng-by-
weightstrategy? in which the tree with fewer nodes is linked below
the root node of the other tree. Figure 1 illustrates bothratpns.

Performing a sequence of NUON-operations andm FIND-
operations on a set of sizeruns onO(n+ ma(m,n)) time, where
a(m,n) is the slowly growing inverse Ackerman function that is
equal to 4 for all practical purposes of the universe. Forlagamt
proof see Seidel and Sharir [19].

We apply the union-find data structure to the handle-reptatien
scheme with reference counting. Both, the handle and the+ep
sentation, are nodes in the rooted tree. The pointer in thdlba
corresponds to a parent pointer, which always points to esep-
tation, i.e., handles never become the representativencat®. The
representation will be enriched with a parent pointer andunter
for theunion sizadefined as the number of all handles and represen-
tations that are in the subtree rooted at a representatictudiing

it). The representative root in the tree is the current rgmtation
valid for all handles in the tree. Other representationshinggill
exist in the tree because other handles and representationso
them and have not yet been processed in a path compressiok to |

in the book by Gamma et al. [7], where reference counting and directly to the root node. If they eventually get re-linkéue refer-

copy-on-write are mentioned as well.

The Cr+ standard library contains tla@to _ptr smart pointer tem-
plate. BoosTs smart pointer library provides intrusive and non-
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ence count will drop to zero and the representation will beased

4Compared to théinking-by-rankstrategy, which would be op-
timal as well and similarly easy to realize.



and removed from the tree.

The memory layout of the different handle-representatiooices
isillustrated in Figure 2. The difference between in-pland refer-
ence counting is abstracted away behimkf@ member function
in the handle class that gives access to the represent&iigure 3
shows this data structure in action with a sequence of soépsh
a small example.

The reference count becomes redundant; a representatioheca
released if its union size drops to one. However, we keepdpe r
resentation count and its processing in the implementatiohpre-
sentation, because the union size is an optional featureead
ability would suffer.

4 Monomorphic-Use Example

We illustrate our design with a small example of a single eepr
sentation class that holds an integer value. Represemteligses
typically are containers for data members and construatotiing
more. (We ignore access protection.)

struct Int_rep {

int val;

Int_rep( int i = 0) : val(i) {
%

The common functionality for handle classes is factored the
Handle base class template. Its full signature is:

template <
typename T,
typename Policy = Handle_without_union,
typename Alloc = std::allocator<T> >
class Handle;

T is the representation type that the handle manages. In the

monomorphic case] does not contain a reference counter yet.
The counter is added automatically by thandle class template.

Policy isthe policy class that determines whether we use reference

counting at all and, if so, if we also use the union-find optiation.
The default value selects reference counting without thensfind
optimization.Alloc is a standard allocator with suitable default.

We derive our handle class frodandle<int _rep> . We add a con-
structor that calls the base class constructor, which in talls
the representation class constructor at the point of dilmcaThis
avoids unnecessary construction of temporaries on the \t&g.
realized with template constructors, which have the litiatato be
only available for up to a fixed number of arguments, in our own
library currently for up to 10 arguments. There exists aaothay

of initializing representations that | skip in this pressran.

struct Int_handle : public Handle<Int_rep> {
typedef Handle<Int_rep> Base;
Int_handle( int i = 0) : Base(i) {}

We implement two member functions: A simple access function
illustrates the access to the stored value through the gghex)
ptr) member function in the base class, which internally perform

the FND-operation if required. So, each data access triggers path

compression. A corresponding set member function illtistréhe
copy-on-write strategy.

int value() const { return ptr()->val; }
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Int i=42;
Int j=42; Int j1=j; Il increase ref-count
Int k=42; Int k1=k, k2=k, k3=k; // and union size
Int 1=42; Int 11=I, 12=l, ..., 18=l;
(a) i::j: LK‘:J |_u I_u
—=> union(i,j)
{ \ Y
3 4 9
4 5 10
JL dL 4L
() j=k \—K‘i LS
—=> union(j,k)
Y Y
2 6 9
3 9 10
- L L
() k==1: i j K [T ]
—> union(k,I) \_\_l\‘
Y
2 5 11
3 8 19
- L 4L
(d) j.value(): i i k [
—> find(j)
Y
2 4 12
3 7 19
- L L
(e) i.value(): ]
-> find(i)
Y
1 3 14
2 6 19

Figure 3. Example of a detailed trace of the union-find data
structure at work. We assume a clas$ nt similar to the exam-
ple in Section 4. Following the layout on the right of Figure 1
the representation stores a reference count, a union sizend a

4

parent pointer to another representation.



void set_value( int i) {
copy_on_write();
ptr()->val = i;

}

We conclude with the equality operator and its use of thennio
find optimization. Thainify member function in the base class is
called for an argumentif the representation of has been found to
be equivalent to the own representation. Depending on thieypo
template argument, this call will do nothing, or it will lead the
simplification that one representation will be replacedtwsy ather
as described in the previous section. Note that tkedd-operation
determines from the union sizes which representation weilfé>
placed by which. This is of no concern in many applications,ib

it does, one could look at the union sizes beforehand and atignu
preserve the preferred representation. Although referenanted,

5 Polymorphic-Use Example

We define a small class hierarchy of two representation etass
again just holding an integer value. In the previous monemor
phic example, we were able to let tHandle class template define
generically the type that contains the representatiors ¢tagether
with the intrusive reference count. Here, thendle class template
does not know the class hierarchy and thus cannot providedim-
venience. Instead, we require now that the root of the clesar
chy is derived from a base class that provides the referemaet.c
This is not a restriction in our context; the design presgiitere
is not a generic smart pointer that users apply to alreadstiegi
classes, rather it is a technique for a library developempfayato
newly developed classes.

The base class containing the reference count actuallyndepan
the Policy of theHandle class template. Furtheron, it needs the

theconst& in the parameter passing is recommended, because oth-g||ocator as template argument, which will be explaineelrlat de-

erwise parts of the union-find optimization gain would beagied

to the next FND-operation on the calling object (since the union
would work on a copy of the handle). A note on constness: | de-
signed the classes for the use in a value semantic contexee
union-find optimization is an implementation decision rfteeting

the interface. As such, itis allowed to work on its internatadalso

for constant objects.

bool operator==( const Int_handle& i) const {
bool equal = (value() i.value());
if (equal)
unify(i);
return equal;
}
I3

So far, our handle class has a fixed reference counting poficy
template parameter for the policy (and analogously for tleea
tor) makes it more flexiblé&:

template < typename Policy = Handle_without_union>
struct Int_handle : public Handle< Int_rep, Policy>

With such an implementation, our handle class has valuerstizaa
The default implementations of copy construction and assant
perform correctly. The difficulties of dynamic memory alition
are encapsulated in tiandle class template.

In CGAL, Geometric Kernelclasses and mangasic Library
classes, such as Nef polyhedra [8], use a similar handle-
representation implementation with value semanticsGeo-
metric Kernel objects in the CGAL::Cartesian and CGAL:
Homogeneous kernels are reference-counted and in G@AL::
Simple _cartesian andCGAL::Simple _homogeneous kernels are
non-reference-counted. Kernel objects are immutable andod

use copy-on-write. The Nef polyhedra use reference cogntith
copy-on-write. The unification strategy is not available.

In the Exacus libraries, many classes use precisely this handle-
representation implementation with reference counting aadue
semantics.

SNote that now calls to member functions of tHendle tem-
plate base class needhis-> prefix, a consequence of tieo-
phase name lookuple for templates [21, Sect. 9.4].

38

tail. This leads to the following base class definition for oot in
our part of the class hierarchy. Besides the base classiftbeedce
to the monomorphic example is the required conventioloag()
member function:

template <typename Policy, typename Alloc>
struct Int_rep
. public Policy::Hierarchy_base<Alloc>::Type {
int val;
Int_rep( int i = 0) : val(i) {}
virtual Ref_counted_hierarchy<Alloc>* clone() {
return new Int_rep( *this);

virtual int get_val() const { return val; }
virtual void set_val( int i) { val = i; }
I
template <typename Policy, typename Alloc>
struct Int_rep2 : public Int_rep< Policy, Alloc> {
int val2;
Int_rep2( int i)
. Int_rep<Policy,Alloc>(i), val2(0) {}
virtual Ref_counted_hierarchy<Alloc>* clone() {
return new Int_rep2( *this);

virtual int get val() const { return val2; }
virtual void set val( int i) { val2 = i; }

h

We turn to the handle implementation. In the monomorphic wee
pass constructor arguments to thendle class template, which in
turn usesAlloc  to allocate and construct the representation. This
does not work here. We have to be able to create any of theederiv
representation classes, which is best done in the hand#trootor
with the new operator. Nonetheless, we want to use the allocator
for memory management, which is the reason why we pass ieto th
base class of the representation class hierarchy. Thischesere-
defines thenew anddelete  operators to use the allocator. (The al-
locator of theHandle class template is not used in this setting.) We
implement two constructors in the handle class as a simpenme
to select between the two possible representation classes.

template < typename Policy,
typename Alloc = std::allocator<char> >
struct Int_handle
. public Handle< Int_rep<Policy,Alloc>, Policy>

typedef Int_handle<Policy,Alloc> Self;



typedef Handle< Int_rep<Policy,Alloc>, Policy>
Base;
Int_handle( int i = 0)
: Base( new Int_rep<Policy,Alloc>(i)) {}
Int_handle( int i, int j)
. Base( new Int_rep2<Policy,Alloc>(i+j)) {}

int value() const { return ptr()->get_val(); }
void set_value( int i) {

copy_on_write();

ptr()->set_val(i);

bool operator==( const Self& i) const {
bool equal = (value() i.value());
if (equal)
unify(i);
return equal;

}

h

shall define the representation type including the inteusiv
reference counter. The Booledn_ch is false if the type

T is not derived from the base class required for the poly-
morphic class hierarchy and true otherwise. islf-ch is
true, Rep shall be equal td@, otherwise it shall be equal to
Ref _counted<T> if no union-find optimization is used and
equal toRef _counted _uf<T> if the union-find optimization

is used.

e The type expressionPolicy::Hierarchy _base<Alloc>
=Type shall be the base class suitable for deriving a poly-
morphic class hierarchy, see the example above.

e The static member functiomify(h,g) acting on two han-
dlesh andg shall perform the union step, if applicable for this
policy.

e The static member functioimd(h)  acting on one handle
shall return a pointer to the currently valid representatiti
shall perform the find step with the necessary side effects on
all involved representations.

One may ask, if the differences between the monomorphic US€ the Ref counted class template combines the intrusive reference

and the polymorphic use are so big, why do we use the same

Handle class template? We still reuse plenty of the orthogonal
aspects in thédandle class template, which is illustrated by the
fact that the member functions in the handle class are icEnti
in both examples. In particular, copy-on-write and the aatibn
work the same. Of course, one choice is not possible in thg pol
morphic case, namely to not use dynamically allocated sgpre
tations Handle _in _place policy), because we would lose the in-
ternal pointer used for the realization of polymorphismtia C++
language. Not explained in this paper, but all such cormgsaire
checked statically at compile time.

The affine transformation classes in the & Geometric Kernel
use a similar handle-representation implementation wiiblyamor-
phic class hierarchy of specialized representations &orstation,
scaling, and others [6]. InJAcus, the arrangement of quadrics
in space uses this solution for the polymorphic represiemtaif
projected silhouette curves and pairwise intersectionesuf3].

6 Handle Class Template for Monomorphic
Use

We offer three policy classes for tifelicy parameter.

e Handle _in _place : the handle stores the representation di-
rectly in place without reference counting and without dy-
namic memory allocation. It cannot be used together with
a hierarchy of polymorphic representation classes, sinee t
necessary pointer is now missing in the handle.

e Handle _without _union : regular reference counting, i.e.,
without the union-find optimization.

e Handle _with _union :
optimization.

reference counting with the union-find

The first policy is actually not used as a policy class in theegie
Handle class template. It is used to select a specialization, which
mostly consists of empty stub implementations. The spieeat#bn

is listed in Appendix A.2. The other policies deal with théam

find optimization (two static member functions) and two degent
types. The dependent types are actually member templadesiran

ilar to the rebind mechanism of the standard allocator fater.

e The type expressiorPolicy::Rep  _bind<T,s _ch>:Rep
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counter with the representation typeThis is the actual representa-
tion a handle refers to. The template with its few suppontiam-
ber functions is self-explanatory.

template <typename T>
class Ref_counted {
mutable unsigned int count;
T rep;
public:
typedef Ref_counted<T> Self;
typedef T* Rep_pointer;

Il reference counter
Il representation

Ref _counted() : count(1) {}

Ref_counted( const T& t) : count(l), rep(t) {}
Ref _counted( const Self& r):count(1),rep(r.rep){}
Rep_pointer base_ptr() { return &rep; }

void add_reference() { ++count; }

void remove_reference() { --count; }

bool is_shared() const { return count > 1; }
int union_size() const { return l+count; }
void add_union_size(int) {}

h

Analogously, th&kef _counted _uf class template combines the rep-
resentation typ& with a reference counter, a counter for the current
union size, and a parent pointer. The representation is \calig

for roots in the union-find data structure, in which case thept
pointer is null.

template <typename T>
class Ref_counted_uf {
public:
typedef Ref_counted_uf<T> Self;
typedef T* Rep_pointer;
friend class Handle_with_union;
private:
mutable unsigned int count; // reference counter
mutable Self* parent; // parent or O

mutable int u_size; /I union set size
mutable T rep; Il representation
public:

Ref _counted_uf() : count(1),parent(0),u_size(2){}
Ref_counted_uf( const T& t)
. count(1), parent(0), u_size(2), rep(t) {}



Ref_counted_uf( const Self& r)

. count(1), parent(0), u_size(2)rep(r.rep){}
... Il identical functions as in Ref_counted
bool is_forwarding() const { return parent != 0;}
int  union_size() const { return u_size; }
void add_union_size(int a) { u_size += a; }

h

We begin with a preliminary implementation of tiiandle class
template neglecting polymorphic class hierarchies. Wéagxphe
necessary changes for the polymorphic use in the next sedtfe
complete solution is in Appendix A. We have already expldine
the template signature in Section 4. It follows a type detian
section with the noteworthigep type for the representation and the
allocator that is rebound to tiRep type, which might differ fronT.
TheRep_pointer  pointer type is in the monomorphic use always
T*. The return type ofind is Rep_pointer

template <typename T,
typename Policy
typename Alloc

class Handle {

public:

= Handle_without_union,
= std::allocator<T> >

typedef Handle< T, Policy, Alloc> Self;
typedef Policy Handle_policy;
typedef Alloc Allocator;

typedef typename Policy::template Rep_bind< T,
false>
typedef typename Bind::Rep

Bind;
Rep;

typedef typename Rep::Rep_pointer Rep_pointer;
typedef typename Alloc::template

rebind<Rep>::other Rep_alloc;
friend class Handle_without_union; Il policies

friend class Handle_with_union;

It follows the only data member, a pointer to the representat
as well as a static allocator variable, object allocatiord abject
release (if the reference count drops to zero).

private:
mutable Rep* ptr_;
static Rep_alloc allocator;

static Rep* new_rep( const Rep& rep) {
Rep* p = allocator.allocate(1);
allocator.construct(p, rep);
return p;
}
void remove_reference() {
Policy::find( *this); // ptr_ is now valid rep
if (! is_shared()) {
allocator.destroy( ptr);
allocator.deallocate( ptr_, 1);
} else {
ptr_->remove_reference();
ptr_->add_union_size( -1);
}
}

Next is the protected interface for the derived handle clissup-
ports the access to the representation througtpttfle member
function, which always invokes theifb-operation. Also the other
member functionsynify andcopy _on_write , have been used in
the examples above.
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protected:

T ptr() {
return static_cast<T*>(Policy::find(*this));

const T* ptr() const {
return static_cast<const T*>(
Policy::find( *this));

void unify( const Self& h) const {
Policy::unify( *this, h); /| forward to policy

void copy_on_write() {
Policy::find( *this);
if (is_shared() ) {
Rep* tmp_ptr = new_rep( * ptr.);
ptr_->remove_reference();
ptr_->add_union_size( -1);
ptr_ = tmp_ptr;

/I ptr_ is now valid rep

The public interface implements the important four parts ris
source management classes: constructors, copy-comsiraie-
structor, and assignment operator.

public:
Handle() : ptr_( new_rep( Rep()) {}
Handle(const Self& h) {
Policy::find( h);
ptr_ = h.ptr_;
ptr_->add_reference();
ptr_->add_union_size( 1);

}

template <class T1> explicit Handle( const T1& t)

o ptr_( new_rep( Rep( T(t))) {}
. /I more constructor templates here

/I ptr_ is now valid rep

"Handle() { remove_reference(); }

Self& operator=( const Self& h) {
Policy::find( h); Il ptr_ is now valid rep
h.ptr_->add_reference();
h.ptr_->add_union_size( 1);
remove_reference();
ptr_ = h.ptr_;
return *this;

7 Extension for Polymorphic Use

A subtle difference lies in thBep_pointer  definition. It does not
point toT, which would be the user base class, but to our base class
provided for the user, thieef _counted _hierarchy  class template.

It provides the reference count and the re-defimadanddelete
operators to use the allocator template parameter.

template <typename Alloc = std::allocator<char> >
class Ref_counted_hierarchy {
mutable unsigned int count;
static Alloc alloc;
public:
void* operator new(size_t bytes) {
return alloc.allocate( bytes);

Il reference counter



void operator delete(void* p, size_t bytes) {
alloc.deallocate((char*)p, bytes);

}
typedef Ref counted_hierarchy<Alloc> Self;
typedef Self* Rep_pointer;

Ref_counted_hierarchy() : count(1) {}
Ref_counted_hierarchy( const Self&)
virtual "Ref_counted_hierarchy() {}

. count(l) {}

Il Return a copy of myself: Write in all classes:
Il return new Derived_type( *this);

virtual Self* clone() = 0;
Rep_pointer base_ptr()
void add_reference()
void remove_reference()
bool is_shared() const { return count > 1; }
int union_size() const { return l+count; }
void add_union_size(int) {}

{ return this; }
{ ++count; }
{ --count; }

h

The base class template extends for the union-find optifoizéd
Ref _counted _hierarchy _uf to contain the union size and the par-
ent pointer in the obvious way, analogouslyRef _counted _uf in
the previous section.

The main difference to the monomorphic case is a new pro-
tected constructor accepting pointers to newly allocategre-
sentations. Many other differences are in the details afcatt

ing and deallocating the representations. The design @ses t
plate meta-programming to detect, if the template argurpemt
vided for the parametef is derived from our classes. Then
we work in the polymorphic-use version or otherwise we work
in the monomorphic-use version. In particular, we test for a
derivation relationship among two classes and use helpecs, as
Type _from _int<i> described by Alexandrescu [1], to select among
overloads of a function.

8 Union-Find Policy Classes

Defined as an empty struct, thiandle _in _place class is not re-
ally a policy class since its purpose is to select a speeiddia of
theHandle classtemplate. For the other policy classes we omit how
the dependent types are selected with template meta-pnogrey
techniques, and refer to Section 6 for their specificatiotate-
mains are thenify andfind member function templates. They
are both trivial for theHandle _without _union policy class:

struct Handle_without_union {
template <typename H>
static void unify( const H& h, const H& g) {}
template <typename H>
static typename H::Rep_pointer find( const H& h){
return h.ptr_->base_ptr();
}
%

TheHandle _with _union policy class has an additional asymmetric
unify member function whose first argument is the larger set com-

struct Handle_with_union {
template <typename H>
static void unify_Is( const H& h, const H& g) {
Il |H] >= |G|, let g point to h's rep
typename H::Rep* hrep = h.ptr_;
typename H:Rep* grep = g.ptr_;
grep->add_union_size(-1);
if ( grep->is_shared()) {
grep->remove_reference();
hrep->add_reference();
hrep->add_union_size( grep->union_size());
grep->parent = hrep;
} else {
g.delete_rep( grep);

Il grep remains

Il grep goes

Il redirect handle g and incr. hrep’s counter
g.ptr_ = hrep;

hrep->add_reference();
hrep->add_union_size(1);

template <typename H>
static void unify( const H& h, const H& g) {
if (find(h) = find(g)) { // safety check
if (h.ptr_->union_size()
> g.ptr_->union_size())
unify_Is( h, g); // make g point to h's rep
else
unify_Is( g, h); // make h point to g's rep
}

template <typename H>
static typename H::Rep_pointer find( const H& h){
typedef typename H:Rep Rep;
if ( h.ptr_->is_forwarding()) {
Rep* new_rep = h.ptr_; // find new valid rep
while ( new_rep->parent != 0)
new_rep = static_cast<Rep*>(
new_rep->parent);
Rep* rep = h.ptr_;
while ( rep != new_rep) { // path compression
Rep* tmp = static_cast<Rep*>(rep->parent);
if ( rep->is_shared()) { Il rep remains
rep->remove_reference();
if (tmp != new_rep) {
Il re-link rep to the new_rep
rep->parent = new_rep;
new_rep->add_reference();

} else {
h.delete_rep( rep);
}

rep = tmp;

Il rep goes

h.ptr_ = new_rep; // hook h to new_rep
new_rep->add_reference();

return h.ptr_->base_ptr();

}

h

pared to the second argument. All three member function lee® 9 Discussion
have handles as arguments and switch to the representatépns
andgrep , respectively. They implement the algorithms explained The presented design of a handle-representation implati@min

in Section 3: C++ features the novel ideas of a smart union-find optimizatiwh a
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postpones the decision for reference counting to the lbuaer.
The implementation works seamlessly together with stahdér
locators and polymorphic class hierarchies. My emphasks ava
the ease of use and readability of handle classes and ratatise
classes realized with this design (c.f. Section 4 and 5). dviwor-

phic and polymorphic use can not be exchanged easily, butstha
not to be expected unless the monomorphic use loses some of it

current ease of use.

The presented implementation was developed for thedos li-
braries, representing 120 thousand lines ef Qibrary and test

code, and is since 2001 successfully in use for many clasies.

similar implementation is in use in thed@@L project for quite some
time.

The implementation is exception safe, but does not suppalitpte

threads, which could be added with straightforward lockiech-

niques. Another option, which | have not tried, could be ga&
collection instead of reference counting.
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template <typename T,

typename Policy
typename Alloc

Handle_without_union,
std::allocator<T> >

class Handle {

public:
typedef Handle< T, Policy, Alloc> Self;
typedef Policy Handle_policy;
typedef Alloc Allocator;
typedef Conversion_derived_base<T,
Ref_counted_hierarchy_base> Check;

enum { is_ch = Check:is_inheritance };
typedef Type_from_int< Check::is_inheritance> CH,;

typedef Type_from_int<false>
typedef Type_from_int<true>

T false;
T true;

typedef typename Policy::template Rep_bind< T,

is_ch> Bind;



/I internal representation, i.e., T plus a ref

I count (if needed) or just T if we derive

/I from the base class to support a class

Il hierarchy for the representations.

typedef typename Bind::Rep Rep;

typedef typename Rep::Rep_pointer Rep_pointer;
typedef typename Alloc::template
rebind<Rep>::other Rep_alloc;

friend class Handle_without_union;
friend class Handle_with_union;

private:
mutable Rep* ptr_;
static Rep_alloc allocator;

static Rep* new_rep( const Rep& rep) {
Rep* p = allocator.allocate(1);
allocator.construct(p, rep);
return p;

}

static void del_rep( Rep* p, T_false) {
allocator.destroy( p);
allocator.deallocate( p, 1);

}
static void del_rep( Rep* p, T_true) { delete p;}
static void del_rep( Rep* p) { del_rep(p, CH();}

static Rep* clone_rep( Rep* p, T false) {
return new_rep( *p);

static Rep* clone_rep( Rep* p, T_true) {
return static_cast<Rep*>(p->clone());

}
static Rep* clone_rep( Rep* p) {
return clone_rep( p, CH();
}
void remove_reference() {
Policy::find( *this); // ptr_ is now valid rep
if (! is_shared()) {
del_rep( ptr));
} else {
ptr_->remove_reference();
ptr_->add_union_size( -1);

}

template <class TT>
Rep* make_from_single_arg( const TT& t, T_false){
return new_rep( Rep( T()));

template <class TT>
Rep* make_from_single_arg( TT t, T_true) {
return t; // has to be ptr convertible to Rep*
}
protected:
T* ptr()
return static_cast<T*>(Policy::find(*this));

const T* ptr() const {
return static_cast<const T*>(
Policy::find( *this));

}
void unify( const Self& h) const {
Policy::unify( *this, h); // forward to policy

void copy_on_write() {
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Policy::find( *this); // ptr_ is now valid rep
if (is_shared() ) {
Rep* tmp_ptr = clone_rep( ptr_);
ptr_->remove_reference();
ptr_->add_union_size( -1);
ptr_ = tmp_ptr;

}
Handle( Rep* p) : ptr_( p) {} // for hierarchies
public:

Handle() : ptr_( new_rep( Rep())) {}

Handle(const Self& h) {
Policy::find( h);
ptr_ = h.ptr_;
ptr_->add_reference();
ptr_->add_union_size( 1);

/I ptr_ is now valid rep

}

Il Forwarding constructor passing its parameter
Il to the representation constructor. In case of
Il the class hierarchy of representation classes,
Il this constructor is also chosen for pointers
Il to newly allocated representations that are
Il types derived from T. In that case, the ptr
Il'is just assigned to the internal pointer.
template <class T1>
explicit Handle( const T1& t)
. ptr_( make_from_single_arg( t, CH()) {}
/I more constructor templates here
"Handle() { remove_reference(); }
Self& operator=( const Self& h) {
Policy::find( h); Il ptr_ is now valid rep
h.ptr_->add_reference();
h.ptr_->add_union_size( 1);
remove_reference();
ptr_ = h.ptr_;
return *this;
}
3

A.2 Handle Class Template Specialization

template <typename T, typename Alloc>

class Handle<T, Handle_in_place, Alloc> {

public:
typedef Handle< T, Handle_in_place, Alloc> Self;
typedef Handle_in_place Handle_policy;
typedef Alloc Allocator;
/I identify T with the internal repr. Rep.

typedef T Rep;
private:

Rep rep; Il store the rep in place
protected:

T* ptr() { return &rep; } /I access

const T* ptr() const { return &rep; }

void unify( const Self&) const {} /I NOP

void copy_on_write() { /I NOP
public:

Handle() {} /I constructors

Handle(const Self& h) :
template <class T1>
explicit Handle( const T1& t) : rep( Rep(t) {}

/I more template constructors here

rep( hrep) {}
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Abstract

This paper presents the rationale for a novel approach tadsro
ing expressive, teachable, maintainable, and cost-eféespecial-
purpose languages: Semantically Enhanced Library Language
(a SEL languageor a SELL) is a dialect created by supersetting a
language using a library and then subsetting the resulgwsiool
that “understands” the syntax and semantics of both therlyade
ing language and the library. The resulting language carbbata
as expressive as a special-purpose language and providedser
mantic guarantees as a special-purpose language. How&/EeL, L
can rely on the tool chain and user community of a major génera
purpose programming language. The examples of SELLs pgezsen
here Safe C++ Parallel C++, andReal-time C+4) are based on
C++ and the Pivot program analysis and transformation strfua-
ture. As part of the rationale, the paper discusses praptichlems
with various popular approaches to providing special-psepfea-
tures, such as compiler options and preprocessors.

1 Introduction

We often need specialized languages. Researchers neefddo ex
iment with new language features, such as concurrency résatu
[24], facilities for integration with databases [5], andyhics [4] .
Developers can sometimes gain a couple of orders of magnitud
reductions in source code size with corresponding redustia
development time and defect rates, by using such specipbpe
languages in their intended domains. Unfortunately, speial-
purpose languages are typically hard to design, tediouspber
ment, expensive to maintain, and — despite their obvioubyut-
tend to die young.

Using a (special-purpose) library is an obvious altereatiy a
special-purpose language. However, a library cannot egpeex-
ploit semantic guarantees beyond what its host languagede
The basic idea cBemantically Enhanced Library Languag&EL
Languages or simply SELLS) is that when augmented by a {ibrar
a general-purpose language can be about as expressiveesa-sp
purpose language, and by subsetting that extended langaéoel
can provide about as good semantic guarantees. Such geesant
can be used to provide better code, better representatindsnore
sophisticated transformations than would be possible Herftll
base language. For example, we can provide support forlglaral
operations on containers as a library. We can then analygzprti:
gram to ensure that no undesirable access to elements eftbns
tainers occurs — a task that could be simplified by enforcibgra
of languages features that happened to be undesirablesindh
text. Finally we can perform high-level transformationsdls as
parallelizing) by taking advantage of the known semanticthe
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libraries.

Like a library, a SELL can benefit from the extensive educstip
tools, and library infrastructure of the base language. réfoee,

the cost of designing, implementing, and using a SELL is isinu
cule compared with a special-purpose language with a sreall u
base. Examples will be based on ISO standard C++ supported
by the Pivot infrastructure for program analysis and tramsgtion
(5.2). The focus will be on templates because they providekéy
mechanism for statically type-safe expression of advaideas in
C++.

What is called a “special-purpose language” here is oftdeca
domain-specific language (e.g. [10]). Distinctions can laelenbe-
tween the two terms, but none that appear relevant to thastizm
here, so please consider those two terms as equivalenticdh
text.

The organization of this paper is

1. Introduction

2. State some ideals for support of software development and
maintenance.

3. Present some of the — usually fatal — problems that face new
programming languages.

4. Discuss a few alternative approaches, such as dialedts an
macro languages.

5. Focus on the SELL approach and the way it can be supported
in C++ using the Pivot.

6. Sketch the design of a few SELLs: type-safe C++, Parallel
C++, and Real-time C++.

7. Conclusions

2 ldeals

For every specific problem area, we can design a speciabperp
language that exactly matches the desired syntax and semaht
the domain and the desires of the programmers that will use th
language. In an ideal world, no general- purpose language ca
match such a special-purpose language when applied inatsfiep
problem area. When a special-purpose language has beepetene
fectly, there is a one-to-one correspondence between tigafoen-
tal concepts of the application domain and the languageticats.
Given that, the language constructs can be minimal andttinex
flect the terminology of the field as found in common use andmaj
textbooks.



This is not a new ideal. Fortran did a good job at that task fith-a
metic in the 1950s and COBOL successfully attacked the basin
processing needs of the time. Since then, thousands ofdgegu

language aims at allowing the programmer to express justitabo
anything. On the other hand, a special-purpose languages gai
much of its strength from allowing a programmer to expredg on

have been designed for specific domains and almost as mary hav what makes sense in its specific domain. When it comes togmogr

been designed to try to be able to effectively express theatl ifbr
less specific domain. Lisp and Simula originated the two ragin
proaches to more directly express application domain queadi-
rectly in code: the functional and object-oriented apphesc In
these languages, and in their numerous offspring, a setrwleqbs
is represented as a library of related functions or claskesuch
general-purpose and near-general-purpose languagedeakeaf
the perfect language for the task takes the form of libraries

What do we expect from a well-designed special-purposeikzge?
Concise notation is the beginning. Consider a simple, comod
useful example:

A=kB +C

First note the algebraic notation using operators. Nataigom-
portant for concise expression of key ideas in a communityis T
particular notation is based on almost 400 years of historthée
mathematics/scientific community.

Essentially all languages can handek*B+C when the variables
denote scalar values, such as integers and floating poinbensm
For vectors and matrices, things get more difficult for a gelke
purpose language (that doesn’t have built-in vector andrixnat
types) because people who write that kind of code expecbperf
mance that can be achieved only if we do not introduce tempo-
rary variables fok*B andk*B+C. We probably also need loop fu-
sion (that is, doing the element *, +, and = operations in ai-min
mal number of loops). When the matrices and vectors are epars
or we want to take advantage of known properties of the vector
(e.g.,B is upper-triangular), the library code needed to make such
code work pushes modern general purpose language to timétir li
[17, 23] or beyond — most mainstream languages can't effilgien
handle that last example. Move further and require the céapu
tion of A=k*B+C for large vectors and matrices to be computed in
parallel on hundreds of processors. Now, even an advanweghfi
requires the support of a non-trivial run-time support egs{1].

We can go further still and take advantage of semantic ptigsesf
operations, such as “remembering” that C was the result opan
ation that leaves all its elements identical. Then, we canusch
simpler add operation that doesn't involve reading all eenents

of C. For other examples, preceding the numerical calculatibm w

a symbolic evaluation phase, say doing a symbolic difféaéon,

can lead to immense improvements in accuracy and perfonanc
Here, we leave the domain where libraries have been coesider
useful. Reasoning like that and examples like that (and maone
realistic ones) have led to the creation of a host of speuigbose
languages for various forms of scientific calculation [24].

So, the ideal notation offered by a general purpose langisggst
the beginning. It can be the basis for comprehension, forctas-

pilation, for performance (exploiting type informationcasemantic
properties), for reasoning about programs (by the impleatiem

or associated tools), for programmer productivity, for mgkacil-

ities accessible to professionals who need to program infik&l

of expertise, yet don’t want to become professional prognans
(e.g., physicists, engineers, animators, and graphisigders). Fi-
nally, the clarity of the code can greatly ease maintenance.

Note that the ideals and strengths of special-purpose anetgle
purpose languages can conflict. By definition, a genergiqze
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analysis and optimization, this is a great strength of aiapgaur-
pose language. For example, if an optimizer tries to do a sjimb
differentiation of a program in a language focused excklgiwn
scientific computation, it does not have to worry about a oy
mer trying to differentiate the draw function of a graphigstem.

Convenient graphical interfaces are often associated spiétial-
purpose languages. They can be used as an extreme example of
direct representation of ideas or as a special- purposeuayeg
However, such interfaces can be used to equal effect for oode
a general-purpose language, so GUIs will not be examinebefur
here.

3 Problems

It is fun to design a new programming language. Doing theainit
implementation and trying the new language with clever edam
can be most exhilarating. However, it is plain hard work tmdpr
the implementation up to the level needed for users who aatre n
ing about language design subtleties. Building supportous,
such as debuggers and profilers, is hard work and not intedtyg
stimulating for most people who design programming langsag
Real users also need basic numeric libraries, basic gralpfaicil-
ities, libraries for interfacing with code written in othienguages,
“hand holding” tutorials, detailed manuals, etc. Doingheafthose
things once can be interesting and most educational, dbéerg all
or repeatedly is tedious and often expensive. Porting tipdeimen-
tation, tool base, and key applications to new machine¢foplas,
and compilers repeatedly is not only tedious, but also cateath
for many people. Basically, designing, implementing, rteiming
and supporting a language is tremendously expensive. Galgea
user community can shoulder the long-term parts of that.

The net effect is that on the order of 200 new languages am-dev
oped each year and that about 200 languages become unsapport
each year. “Language death” doesn'’t just happen to bad ez
For example, you can find a collection of 16 languages for-high
performance computing iRarallel programming using C+424].
Most have very appealing aspects, many are based on Hrilian
sights, all were supported by an enthusiastic researctpgemd all
had years of stable funding. None are in major use today. ldome
supported by an organization outside the one that develthzed.

All but one are dead.Interestingly, the one survivor (Charm++) is
more of a library than a language.

In addition to the really ambitious language design prajetttou-
sands of researchers work on dialects and associated todlefr
research. Such dialects are not built from scratch; inste@dm-
piler and key support tools are modified to serve the new cliale
Essentially all become unsupported upon graduation, fgnekpi-
ration, tenure, promotion, transfer of maintenance resipdities,
change of fashion, change of any part of the tool chain, charfg
management, consolidation of IT operations, etc.

Some of these languages are designed for research onlya{or cl
to be), but many are aimed at non-research use (or claim tariake)

11'd love to be proven wrong on this, so if you have a counter
example, please tell me and we'll celebrate this exceptigunacess
together.



most language designers harbor dreams of wide use for treir |
guages. However, most of these new languages and diale@s ne
see non-research use. The ones that do, are generally drijgve
maintenance organizations. That is not just prejudice anvalld
ingness to learn or to change. There are perfectly good medeo
the lack of enthusiasm in maintenance organizations. Famex
ple, the supply of reasonably priced support personnelstémdbe
severely limited. Good designers and good researcheridtiyp
with PhDs) rarely want to become maintainers with a typicaim
tainer’s salary, work conditions, and career prospects.

Each new language and dialect has its own tool chain thatsrteed
be kept current and in sync with other tools. The cost of deing
for a minor dialect is typically higher than for a major laege —
because the cost of the latter is amortized over millionssafrst
These reasons are often solid in economic and managemers, ter
even though they can be heartbreaking for the proponentaiefva
language or dialect. For example, the largest applicatsomguML
within AT&T was rewritten in a non-research language and soew
the few uses of a very interesting rule-based language Rat-ctm
be seen as an early precursor of aspect-oriented progranjiriip

Tool chain problems don't just happen to “Momé&Pop langudges
| have seen major organizations abandon Ada for just thisorea
Similarly, education can be a major problem. If a languagé is
taught in universities (or only in a few schools), good pesgmers
become scarce and most organizations cannot afford tairerew
hires. Furthermore, new programmers are sometimes overly i
pressed by their favorite language and resist training.veseen
organizations abandon Fortran for that reason. The twetsfiere
mutually reinforcing.

However, most special-purpose languages, proprietarieai&a
etc., never get a large enough user base and tool set to Wity a
decline. Most minor and research languages simply nevertgei
tool support and availability on a wide range of platformatthisers
of mainstream languages take for granted. Unless a newadaegu
is really a minor dialect of an existing language, almosbélihe
design and implementation effort is recreating facilittessuch
as debuggers, profilers, database interfaces, and GUlaioésr—
that tend to lie outside the main interest of the languagégdes
ers. This repetitive reconstruction of “standard fa@hti provided
for other languages breeds lots of “good little ideas” appeadd
improvements. Unfortunately, such “little improvementshd to
further isolate users. Since “further isolates” can be s=satlocks-
in users” as well as “provides better support than the coitigat
there is often little resistance to gratuitous replicatod incompat-
ibility. Compatibility is just hard work, and typically uawarding.

How many users does it take to sustain an infrastructure®@se,
that depends on a lot of things, but generally it requiresenp@o-
ple than work on a single application. In fact, it typicalgkes at
least a small company. That is more — often significantly mere
people than it took to create the initial design and impletaton

of alanguage. If — as is usual — these people have to be paid fro
the revenues from sales and teaching, a special-purpogadge
now comes under pressure to become more widely useful. That
is, the special-purpose language starts to offer facliiee general
computation, general data structures, access to “extsystéms,”
database facilities, graphics facilities, etc. The resait be sum-
marized as “Every special-purpose programming languageswa
to grow up and become a general-purpose programming laeguag
Typically, this is a precursor to “language death” (becaofa-
stability, lack of design focus, and added cost) or to a agtirgto

a commercially viable niche that covers only a small parthaf t
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special-purpose language’s natural application domalms With-
drawal is often accompanied with a lot of commercial hype and
tendency to hide and obscure genuine technical information

Many (probably most) special-purpose languages suffen fexige
effect” problems. The “edge effect” (also more evocativatpwn

as the “falling off the cliff” effect) comes when a programmmeeds

to do something that isn’'t supported by the special-purgase
guage. For example, a programmer using a language for gpecif
ing interactive graphics might want to say “when viewed fram
sufficient distance, groups of objects may be consideredobne
ject.” The graphics system could have provided such a feahurt

in this case it didn’'t (and the difference in real-time resg® was
about a factor of 100). What does the programmer do? By defi-
nition, every special-purpose language has such “edges.’sti-
dents and novices, the effect can be a nuisance; for profesdsi
working on large projects (such as the airline control agajion
from which this graphics example was chosen), the resultoean
the abandonment of the special-purpose language in fa\ar af-
ternative, such as a graphics library written in a geneuappse
language. But what does a programmer do if changing toofs isn
an option? In a “pure” special-purpose language, a new pvieni
operation or object must be added. That's not somethingy eyer
plication programmer can do because it may effect the basden
of the special-purpose language. | have seen the time fongdd
simple feature vary from one day (ask a local expert and veait f
the overnight tool build) to half a year (wait for the nextea$e) or
more. This kind of delay can kill a project, so it must be cdeséd
among the risks when choosing or designing tools. For arlibra
and for any tool that allows a programmer to add code writtea i
general-purpose language — the problem is minor.

The final nail in the coffin of many special-purpose languag#zat
once itis designed and in use, itis relatively easy to “emellli¢s fa-
cilities in a general-purpose language. Often, the valuesyfecial-
purpose language is not really in the language implememtati its
particular syntax (though programmers can be passiondésiyted

to a syntax). The value is in the design, the programming imode
the techniques for use, and possibly some special algcsitdata
structures sustaining applications. Typically, thosecEdgurpose
language “implementation details” can be separated framah-
guage and used directly from a general-purpose languags.isth
all the easier because these key components are writtemia so
general-purpose language. All that is needed for theirctiuse

is a nice programming interface in that general-purposguage.
The definition of “nice” will reflects the experience gainedrh the
use of the special purpose language.

Please note that a language is rarely “killed” by any one efitob-
lems mentioned. Typically, the language succumb to a coatioim
of problems. Also, this list is not intended to be completaetces-
sary “fatal”: some special-purpose languages do survidesame
fail because of reasons not listed here. An exhaustive flistab-
lems probably couldn’t be compiled, and if it could it woulé b
beyond the scope of this paper.

3.1 Casestudy: R++

A detailed study of a few hundred new languages to providie sol
evidence for the observations made here would be useful. - How
ever, | doubt it would dampen the enthusiasm for designing ne
languages. Here, I'll just present one small example, aed fro-
ceed to an alternative approach to providing new facilitiegoro-
grammers.



R++[11] is an unrecognized precursor to aspect-orientedram- 4. Dialects
ming. Basically, it is an extension of C++ in which you can defi

actions and triggers for actions. For example, a retirerpeticy Each can be an effective approach in some cases and eactehas be
can be associated with &mployee class like this: used in ways that have been deemed successful. Here, we must
consider their fundamental and practical strengths andmesses.
rule Employee::retirement _policy  { . .
age>=65 && status'=retired Thes_e are not the only possible approaches. For examplejyighe
= consider:
) cout << name << " must retire..." 1. Dynamically typed languages

2. A new, more general, general-purpose language

This is simple enough to be easy to teach. Furthermore, thieim
mentation was a small enough increment on C++ that it was rel-
atively easy to maintain. Since R++ is a superset of the géner
purpose language C++ there are no edge effects. It was used in
reasonably large telecom operations system applicatiatorials,
academic papers, manuals, experience reports, impletiventzic.
were provided. You can find them on the web [11].

Dynamically typed languages are not considered here. Ema#in
reason is an interest in compile-time guarantees. Bagichlham-
ically -typed languages constitutes a different world frthra stat-
ically typed world that | focus on here. Dealing with that Vebis
beyond the scope of this paper.

One might consider building a new general purpose languege p
viding facilities that are so complete that every speciaippse lan-
guage can be expressed directly through the mechanism géthe
eral purpose language. That's one of the holy grails of ganer
purpose language design. In fact, over the last 30 years tha®@
has been a stream of such languages offering facilitiesdfinidg
extended syntax (e.g., through embedded parsers) andasmpc
semantics with the newly defined constructs. Such languages
also beyond the scope of this paper. Part of the reason iptbat
viding such a language is beyond the means of most orgamizati
needing a special-purpose language. Another problemti§tbai-
cally) such languages themselves suffer from the problérnging
special-purpose languages with small user communitiesresud-
ficient support. The success rate for general-purpose éay&guis
even lower than the rate for special-purpose languages.

For all practical purposes, it died in 1996. The reasons Wwas®
cally that the porting and training costs were too high comgdo
the benefits. What do | mean by dead? Completely unused? Not
necessarily. Ever so often, | see a reference to R++ and I&libe
prised if there wasn't a project somewhere using it. Propdbére
are also a couple of research groups trying it out. Howewer, d
spite ideas that appear fundamentally sound, despiteiagoédige
effects by being embedded in a general-purpose languadejean
spite having an implementation that did sustain a majoriegibn,
R++ still suffered many of the various problems mentionethia
section and failed to gain major use outside its originatirgani-
zation.

4 Alternatives _ )
4.1 Compiler optionsand pragmas
So, in most cases, designing a new language is not an ecaalymic

viable solution to the problem of how to provide specialgmse People who add compiler options and/or pragmas rarely tifiak
facilities. A language often looks good for a few years buinma  as language design. In particular, (in the C and C++ worlds)
tenance, porting, education, etc. is too expensive andethdtris a #ipragma can be ignored by a compiler. However, every new

death or at best stagnation of the tool chain and the user comm #pragma and compiler option introduces a new dialect. It is some-
nity. As a technical/economical choice, designing a newlage thing to consider when building a system, when specifyingstéesn
most often is a mistake. Most language design efforts soaleup  configuration, when porting a system, when documenting tesys
sources reinventing a few wheels and then die having prdvade  and when trying to understand application code. Assume fiooa
poor return on investment. The resources could have be¢er bet ment that options andpragma s are not used for back-door lan-
spent on improvements to an existing major language and-its | guage extension. Then, they are simply insufficient for ga@ny-

braries and tools. Furthermore, most new languages divatera thing really interesting in the direction of better expieaof ideas.
munity by creating barriers to communication of new ideas ot Most special-purpose languages require additions. Altsy, often
infrequently by generating hype that trigger language \&acdsdis- require restriction of use of certain undesirable languagtures.
trust of new ideas. Not all of the problems are the fault ofribes That makes compiler options a too crude a mechanism. Options

language, and new ideas must be explored and exploited. tf&ad, w  tend to apply indiscriminately; for example, we might wametim-
else can we do to bring the ideal of direct expression of ideas inate the use ofoto . However, the option will then eliminate all
code into wider use? goto s — even the acceptable ones for breaking out of loops in a
highly optimized matrix implementation and the essentis@in
So, let's assume that we are in one of the many situationsevher implementation of the state machines generated from a lkigh-
designing a new language is likely to be uneconomical anéwte h  modeling library/language. What is needed is to distiriguns-
undesirable effects on the spread of ideas. What alteasativ we tween uses of an undesirable language feature in user cddkein
have when our task is to provide programmers with improvetsto  use in the implementation of trusted components. Compjigons
for expression ideas in code? are best left for conventional uses, such as backwards dditipa
switches#pragma s are best avoided.
Here are some popular approaches:

1. Compiler options and pragmas 4.2 Libraries
2. Libraries Libraries can provide expressive power and notational eoience
3. Preprocessed languages that approximate that of built-in language features. Hawelt is
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hard to ensure consistent use of a library (or a set of liesarilt is
even harder to ensure consistent use of a subset of a libtaay w

significantly before their own users. This commonly leadsders
having to make a painful choice between using the preprocess

— as is common — too much has been bundled into a single unit the latest and greatest compiler and other tools. Thisesdat-

of distribution. Other language features can interferdnwihat a
library attempts to achieve. The C++ standard library isessit
cal example. It provides well-behaved containers, but sproe
grammers use arrays instead and thereby prevent any maaning
guarantees to be made for the program as a whole.

When ambitious in what they try to achieve in terms of geritgrar
performance, libraries can become very elaborate andebrigor
example, some C++ template meta-programming librariesngim
at very general support for high-performance numerical puotar
tion reach their goal at the cost of complete obscurity oflenp
mentation details that becomes visible to users during gigibg.
Often, a library breaks the zero-overhead principle in cedor
generality.

A library cannot, by itself, eliminate basic problems witbsh lan-
guage semantics. For example, in C and C++, aliasing prablem
persists so that a library cannot provide guarantees ndededn-
fidence, transformations, and optimizations. Often, alipiis (at
least partially) defined in terms of its implementationsihbt spec-
ified as an entity separate from its host language implertienta
This is not a fundamental problem, but it is a common probkemad,
often a serious one in comparison to a special-purpose éegu

4.3 Preprocessed languages

Generating code from a higher-level language into a loweellone
has been popular for decades. For example early C compiers g
erated assembly code; early C++ compilers generated C Gadle;
builders, CAD systems, IDL processors, modeling languagfes,
generate code in languages such as C, C++, Java, C#. That is, t
language source is preprocessed into a host language. Sttemg
languages and language processors are referred to by max@gna
such as preprocessors, macros, generators, wizardsetsyikhd
meta-languages. One way of distinguishing an implementadf

a language implemented by such techniques from a facilfipele
by such translation techniques is whether you can ever getran
message from the target language compiler. If you can it'sea p
processor; if not it's a compiler. For example, by that ciétethe
original C and C++ translators (into assembler and C) wenre-co
pilers whereas Ratfor, C macros, and Microsoft “wizard4y
preprocessors. C++ templates are “right on the edge” inttiest
receive some compiler support (and will receive signifiamtore

in the future: concepts [21, 20]). However, compiler erragsm
sages sometimes fail to refer to the original template soard
often do so spectacularly badly. In consequence, some groegr
mers consider templates “like macros” and avoid them; maogem
avoid uses they consider nontrivial. Here, we considerpgssed
languages, rather than abstraction facilities integraii¢uin a lan-
guage.

The language (generator, macro-language, modeling |gegua
whatever) defined by a preprocessor becomes yet anothealspec
purpose language. It requires documentation, trainingj, $ap-
port. In particular, you need to use a preprocessor togettibra
matching tool chain and compiler. Unless the preprocessiote-
grated into the tool chain and shipped with every implenténa
this implies lock-in and slow upgrades. It is not uncommontfie
preprocessor not to work with the most current version ofttira-
pilers and tools or the underlying language. The main reastrat
the preprocessor implementer doesn’t get access to thoggleos
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tion between the preprocessor users and any noNn-prepooCsEss
they collaborate with. The debugging, compatibility, ardtabil-

ity problems persist because old compilers don't just dieah take
a large organization the better part of a decade to get enenyp-

graded to the latest version (of something), just to fallibelagain
at the next release. For example, it took “forever” (almadteade)
to get C++ template implementations good enough for maiastr
use. However, some users still rely on decade old compilers.

A preprocessed language tends to have problems interagithg
the type system of the host language. Having the same typensys
as the host language is often not good enough — after all,uhe p
pose of a preprocessed language is to elegantly expregs tifiat
cannot be expressed elegantly in the host language. Erextiten
and error reporting problems are just the most obvious elesgl
this. Concepts (a type system for types) [21, 18], as beinglde
oped to improve C++ templates’ support for generic programgm
and template metaprogramming, is an example of a mechanism a
dressing the problem of mismatch of the type systems of aehigh
level language and a lower-level host language. Higherdyges
fills some of the same role in the specification of abstrastion
functional languages.

So, a preprocessed language share many problems of withialspe
purpose language with a stand-alone implementation. I &
their tools become more complete and their definition moeeipe
and separate from the host language, they grow into specigbse
languages. Conversely, if their implementation and typstesy
support becomes more integrated with the host languagecéase
to be separate languages and become abstraction mechafhisieas
host language (C++ templates is a prominent example). litiead
preprocessing languages tend to suffer the problems afrids:
Unless all code conforms to the conventions of the prepescks
language, the guarantees the language can rely on and effdew.

4.4 Dialects

Take a popular general-purpose language, add desireddedtua
compiler and/or a run-time support system, and you have gouar
private dialect. This may be the most popular way of creatingw
language. The result is not quite a special-purpose largguag it
has special-purpose features embedded in a general-pulgnos
guage. Working in a production-quality general-purposeylege
implementation is hard, though. Many people will simultangy
be making modifications in such an implementation. Furtloeem
compilers, debuggers, libraries, tools are required drgsich im-
plementations and major implementations target many quiat.
Consequently, most people who extend a language in this way d
S0 in a minor — less messy — implementation, modifying onky th
part of the tool chain they need, and target only the platfotiney
care about. This is reasonable — in many cases even essential
to allow people to focus their efforts on the design and inm@eta-
tion of the new facilities they want. Unfortunately, theesft is that
unless the major vendors adopt the new dialect, its desigmereft
with a private language. This implies all the usual privateguage
costs — and the usual mortality rate. In addition, it is etiaén
impossible to remove undesirable features from a dialesindso
would destroy compatibility and basically move the languagay
from the dialect classification and into the special-puegdesguage
classification.



5 TheSELL approach

The analysis in sections 3 and 4 paints a grim picture of tbe-pr
lems of applying language design and implementation tegctes to
support software development. One conclusion would beaeele
the field to big corporations with deep pockets: Let them eodi-
sign, development, and apply their marketing muscle; theriwve
with the results, whatever they may be. An alternative agsioh
is to withdraw into some cosy ghetto of our own design andhet t
rest of the world do what it likes without interference orumfrom
us. | like neither alternative and point to a way to dodge then&
of this dilemma:

1. superset: Add libraries to provide application-spediili-
ties, then

subset: Subtract features (outside the library impleatiem)
to provide semantic guarantees

The result is a subset of a superset of a language cafBranti-
cally Enhanced Library Languag&Vhen subsetting we can aim at
a “clean and regular” language. Since a SELL will aim for anar
rower application domain than its host languages, we haweod g
chance of the result being simpler than its host.

We must consider this approach in terms of expressivenean (e
really express things as well in a library as in a speciappse lan-
guage?”) and tools (“will we get stuck developing and mairitey

a messy tool chain?”). The claim is that the answers can b& “ye
and “no” for a large enough range of problems and a low enough
cost to prefer the SELL approach over the traditional apgrea
mentioned in sections 3 and 4. Obviously, the SELL approach i
not completely new — in fact, it is an attempt to synthesizeatwh
has worked best in the traditional approaches and dodge drst w
problems. Please also note that | don’t claim that the otper a
proaches to making special-purpose features availabler mesrk

or that there are no other alternatives. That would be abs\idt

| do claim is that the success rate for new languages — if nmedsu
by survival of a language for a decade and use outside the ginati
originated it — is very low and the costs higher than ofterized.

The argument about expressiveness of libraries is basegain af
old Bell Labs sayings:

1. Library design is language design
2. Language design is library design

We need both. In other words, the expressiveness of a liloery
pends on the ability of a general-purpose language to define |
braries. Functional programming, object-oriented progréng,
and generic programming are prominent schools of thougitt th
give a prominent role to library building.

The skills needed to write a good library are very similarhe t
skills needed for all high-end systems programming or apfitn
building. Furthermore, when we write a library, we can rety o
existing infrastructure (compilers, debuggers, librarieducation,
etc.). The result is that libraries are cheap to produce eoetbto
alternatives.

However, the tools part could easily lead us into the demgygi
tool chain, and maintenance problems characteristic ¢éctmand
preprocessors. To avoid that we need a tool for expressing co
straints and high-level transformations that is minimatiyasive
into the tool chain. To further keep the tool problems unaetiol,

we need a general tool for doing that and one that will fit ifto a
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tool chains. That is, we need a general-purpose tool foryaime
source code and performing source-level transformativetsrélies
on a standard interface to compilers.

51 C++

In principle, any general-purpose programming language e
the host language for the SELL approach. Unsurprisinglyfany
vorite/chosen host language is C++ [19, 8]

C++ has the virtues of stretching to a very broad range ofiegypl
tion areas, good performance, a large and lively user coritypun
and support for compilers, libraries, and tools for essdigtiall
platforms [22].

C++’s abstraction facilities provide adequate supportdbject-
oriented programming, generic programming, traditiomakpdu-
ral programming, and multi-paradigm programming comtgref
ements of those. Classes plus templates plus overloaditigeis
basis of expressiveness and performance.

Obviously improvements are possible — even given the Diiacon
compatibility constraints imposed by the huge user comtyiamd
the wide range of application areas. In particular, we hbpethe
next standard (C++0x) will offer concepts (a type systentypes),
more general and flexible facilities for initialization,caremedies
for many minor annoyances [20]. Unfortunately, the conipkty
constraints and the use of C++ for very low-level system ammp
nents precludes remedying obvious weaknesses, such &g ager
gressive implicit conversions (inclunding the array-twrper con-
version) and unchecked unions.

5.2 A brief overview of the Pivot

The Pivot is a general framework for the analysis and transdie
tion of C++ programs[13]. The Pivot is designed to handlectre-
plete ISO C++, especially more advanced uses of templategian
cluding some proposed C++0x features. Itis compiler indedpat.

There are lots of (more than 20) tools for static analysistesuus-
formation of C++ programs, e.g., [15, 2, 16, 12]. Howevew fe-

if any — handle all of ISO Standard C++ [8, 19], most are spe-
cialized to particular forms of analysis or transformatiand few
will work well in combination with other tools. The design thfe
Pivot is focused on advanced uses of templates as used ingene
programming, template meta-programming, and experirheis&

of libraries as the basis of language extension. Sincadstgpes

is central to such libraries, the SELL approach requirepeesen-
tation that deals with types as first-class citizens andwval@nalysis
and transformation based on their properties. In the C++weom
nity, this is discussed under the headingcoficeptsand is likely

to receive some language support in the next ISO C++ standard
(C++0x) [21, 18, 20].

The central part of the Pivot is a fully typed abstract syritae
called IPR (nternal Program Representatifn

To get IPR from a program, we need a compiler — only a compiler
“knows” enough about a C++ program to represent it compfetel
with syntactic and type information in a useful form. In peutar,

a simple parser doesn’'t understand types well enough to deda c
ible general job. We interface to a compiler in some appederfto

a specific compiler) and minimally invasive fashion. A colapi
specific IPR generator produces IPR on a per-translatidrbasis.



C++ source — Object code

Information
XML

Figure 1. An overview of The Pivot infrastructure

Applications interface to “code” through the IPR interfac®o as
not to run the compiler all the time and to be able to store aedym
translation units without compiler intervention, we caoguce a
persistent form of IPR called XPRXternal Program Representa-
tion).

The IPR is complete and arguably minimal. Traversal of C+deco
represented as IPR can be done in several ways, includidgéay
graph traversal code,” visitors [6], iterators [19], or l®such as
Rose [15]. The needs of the application — rather than the IPR —
determines what traversal method is most suitable.

Currently, the Pivot does not support an annotation languBgyot
programs can annotate IPR nodes, but there is no facilityhfer
programmer to embed annotations in the C++ source text.idRrov
ing such a facility is easy, but once programmers starts peoi

on such annotations, they have created a new special-pulaos
guage. We want to explore how much can be done with the SELL
approach, relying only on standard conforming C++ sourkke te

6 Examplesof SELLs

The proof of the pudding is in the eating, but this is not a pape-
senting you with a SELL for use; it is a presentation of theggah
idea of SELLs. Therefore, | present only details that willstrate
the idea of a SELL, not complete SELLs.

6.1 SafeC++

C++ inherits a host of opportunities for type violationsrfr& and
adds a few of its own. It is possible — and not very hard — toevrit
type-safe code in C++. However, it is not easy to know thaype t
violations exist in a program, especially in a large prognarit-
ten and maintained by many programmers with a variety of back
grounds and a variety of ideas of what constitutes safe cS8ae.
how would we support a type-safe dialect of C++ that mairstain
the essential expressiveness and efficiency of C++? Incpéatj
we want to be sure that there are no type violations in the.cokde
can only be really sure if we can provide a tool (or combinatd
tools) that will detect all violations. In the absence ofispave must
rely on humans to follow rules. That would probably be bettan
the state of the art in most software development orgaoiastibut

it would only be second best.
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Consider the major insecurities in C++ code:

1. Buffer overruns — i.e., reading or writing outsider thaga

of an array

. Dereferencing an uninitialized pointer, a zero-valuethier,
or a pointer to a deleted object

. Misuse of a union — i.e., write a union variable as one type
and read it as another

. Misuse of a cast — e.g., cast an int to a pointer type where no
object of that type exist where the new pointer points

. Misuse ofvoid* to avoid* and cast

thatvoid*

. Deleting an object twice, not deleting an object after, use
using a pointer after deletion.

— e.g., assign aint*
to adouble*

The obvious approach for avoiding these problems is to geosi
library (or a set of libraries) that saves the programmanfhaving

to use these error-prone features. For example, insteasing ar-
rays, the programmer can use a range-chegketdr and instead
of aunion a user can use a taggedion or anAny type. Casts
(with exception of the dynamically type-safignamic _cast ) and
void* s are rarely useful outside low-level and easily encapsdlat
uses, so they can simply be avoided. If we use counted psjnter
memory leaks won't happen (depending on how cyclic datastru
tures are handled). Since pointers are checked, we dorgsacc
through invalid pointers and double deletions are easilgaed.

Basically, errors that cannot be detected until run-tineesgstemat-
ically turned into exceptions, makirgafe C++a dynamically type
safe language. Exceptions may not be your favorite langtesye
ture, but they are useful in most contexts and are univgrsakd
for reporting run-time type violations in languages deertygu-

safe.

So, we can fairly easily write code that doesn’t suffer frame t
obvious type-safety problems. What is outlined here is alSEL
where the superset is created by adding chegketdr s, “smart”
checked pointers, a taggedion (or anAny type). However, noth-
ing has been gained if users persist using the unsafe-ésatuun-
safe ways. For example, we can write safe code, but somegte mi
just do something like this:

double* horrible(int i)
{
int v[80];
char* p = new char[200];
double* g = new double[200];
Shape* pc = new Circle(Point(10,20),20);
delete[] p;
p[100] = ‘¢’
plil = X
v[100] = 666;
pc->rotate(45);
pc->draw();
f(pc);
void* vp = v;
delete vp;
delete[] p;
return q;

}

Obviously, the subsetting (enforcement) part of the SEL&igle
must be to detect and eliminate the unsafe uses of the host lan



guage. Please note that the tool that does that must diginge-
tween the use of the “banned” features or uses of featurdsnwit
the implementation of the extensions and direct use by tee Us
this case, a dumb tool (such as a compiler option) banningsat
of pointer would prevent the use eéctor that uses pointers in-
ternally. Instead, we could use the Pivot to catch only thes f
pointers outside our supporting classes. That done, o wodld
have to be rewritten to look something like:

unique _ptr<vector<double>> messy(int i)

vector <int> v(80);

string p(200);

vector<double> q(200);

scoped _ptr<Shape> pc(new Circle(Point(10,20),20));

p[100] = 'c’ I ok

plil = 'X; Il checked at run time

v[100] = 666; /I caught at run time

pc->rotate(45);

pc->draw();

f(pc);

return unique  _ptr<vector<double>>(q);
}

This is much better (ignoring the messy use of “magic cornstan
but Safe C++could have problems for real-world programming in
many areas where C++is used: We have not dealt with perfaenan
and compatibility. Actually, this code hints of a very sificént
concern for performance in the library designoped _ptr deletes
its object at the end of scope and prevenfsom keeping a refer-
ence to that object. Similarlypique _ptr cooperates witliector

to ensure that the elements gpfare transferred out ahessy and
not destroyed as part gfupon exit. We didn’t just rely on counted
pointers of a garbage collector to deal with resource proble

Using the Pivot, we could do better, though. By default, both
uses ofpc in messy must be checked for validity (assuming that
ascoped _ptr can be a null pointer). However, a bit of simple flow
analysis can eliminate the second check, and a slightly clever
analysis will reveal that no checking is actually necessd/g can
see thapc has been properly initialized and not assigned to — and
so can the Pivot. This kind of analysis has been used experime
tally for private languages and dialects [9]. Given the Biwe can
apply this for a library or for “raw C++."

Compatibility is a harder problem. Whatfifis not known to be
safe? What if we can't rewrite or recompile all the code of s-sy
tem? What if layout compatibility of some data structureseis
quired? Safe C++as presented here is just an illustration, not a
full-blown SELL.

6.2 Parallel C++

With the emergence of cheap multiprocessors, clustersirariit
core chips, concurrency is increasingly important. Mamglaages
and dialects have been designed to address the concurreedg n
of high-performance scientific computing. Here | will buibth a
library, STAPL [1] [14], that offers parallel operations containers
in the spirit of the STL. For example:

void f(pvector<double>& V)
prange<double> r = find

sort(r);
cout << r;

_all(v.range(),criteria);

/I ordinary serial output of elements
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}

Imagine thatv has 500 million elements and that the program
runs on a serious supercomputer, such as Blue G¢8E(where
STAPL is in fact used). Thénd _all will execute in parallel on

as many processors as the STAPL run-time system deems reason
able finding elements that meetteria . If find _all finds lots

of elements, thesort will also use many processors.

Here we have a sophisticated library combined with an everemo
advanced run-time support system. What can the Pivot dolp® he
For starters, it can produce the information that the rovetsup-
port system needs to function well. Secondly, it can prowilds-
sical flow analysis and aliasing information. Finally, indae pro-
grammed to recognize usage patterns to allow algorithmtisutbs
tion (as in the initial matrix algebra example) and alertghayram-
mer to likely problems or opportunities.

6.3 Real-timeC++

The problems of real-time code for embedded systems combine
concerns for correctness, reliability, and performancecam-
strained circumstances. Some problems and solutionsapverith
those ofSafe C++but others are unique in that they require that
every operation is performed in a known constant time (os)les
Naturally, not all real-time and embedded systems are emritin-

der this Draconian rule, but let’'s see how we can addresg tthas

are. Some C++ operations become unusable:

1. free store (generabw anddelete )

2. exceptions (assuming inability to easily predict thet adsa
throw )

3. class hierarchy navigatiodyfiamic _cast in the absence of a
constant time implementation [7])

First, we add a suitable support library:

1. afixed sizéArray class (no conversion to pointer, knows its
own size)

2. some safe pointer classes

3. memory allocation classes that guarantee constant fime a
cation (and deallocation if allowed) — pools, stacks, etc.

4. ..

Next, we use the Pivot to eliminate dangerous operationkstasl
in 6.1) from user code.

In principle, this will do the job. However, we can do more.rFo
most programs of this sort, we can do whole-program analysis
Such programs tend to be relatively small and not allow dyoam
linking. Thus, the Pivot could be used to allow exceptionseiwor
reporting: we can verify that every exception is caught aidwtate

the upper bound for each throw. This is a special — and edpecia
hard — example of using a tool to verify that resource congionp

is within acceptable bounds.

In general, there is lots more that the Pivot can do in theexant

of embedded systems. Some depends on a specific application,
the boundary between SELL and application support blurseko
ample, it is not uncommon for an embedded program to be more
permissive about the facilities that can be used during dugta
phase. The SELL can define what “startup” means (e.g., called
fromstart _up) and only apply the stringent rules outside that.



7 Conclusions

The first half of this paper outlines the problems facing paow
mers providing and using a special-purpose language defirtbe
most common ways: as a separate language, as compilerg@mn
libraries, using a preprocessor for a general-purposeutgey and
as a dialect. The picture painted is bleak, leading to a sigde
alternative: Semantically Enhanced Library Languag€3ELLS)
The SELL approach offers a practical and economical alteento
the more common ways of implementing extensions, dialectd,
special-purpose languages. By using libraries, it linties prob-
lems with compatibility and tool chains. By adding tool soppit
enhances the appeal of libraries.
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Abstract

FPM (Frequent Pattern Mining) is a data mining paradigm to ex
tract informative patterns from massive datasets. RelBeeshave
developed numerous novel algorithms to extract theserpatte/n-
fortunately, the focus primarily has been on a small set qiupsr
patterns (itemsets, sequences, trees and graphs) anchmewfoak
for integrating the FPM process has been attempted. In tis p
per we introduce DMTL, a generic pattern mining library whic
fuses theoretical concepts from formal concept analysiganeric
programming. It provides a framework that allows mining @éa
spectrum of patterns. We express each pattern in terms od-its
lational properties. Describing patterns based on th&ipgnties
results in a pattern concept hierarchy. This hierarchicadiehis
implemented using principles from generic programming this
paper, we describe our design considerations and the sureq
implementation. Some of the challenges faced in terms gfliage
features have also been highlighted. Apart from using ety

in its entirety, we believe that some of its components, sisctso-
morphism checking, can be used independently. These canfon
can definitely enrich the existing functionality providedsome of
the popular libraries such as the Boost Graph Library.

1 Introduction

Frequent pattern mining (FPM) is a data mining paradigm to ex
tract informative patterns in massive datasets. Its apjidins are
growing enormously, aided by the availability of high cortgdion
power, cheap massive storage, and improved technologyti@ce
tion and distribution of data. Researchers have succéssfyplied
FPM to a diverse set of problems in the areas of market baskét a
ysis [1], bioinformatics [27, 26], web mining, fraud detect [4],
scientific and medical data mining, etc. In many of theseiagpl
tion domains, FPM is not the core component. Hence, avéilabi
ity of the FPM library would allow researchers to save siguaifit
effort and would enable them to focus on their core competenc
FPM research discovepmatternsthat conceptually represent rela-
tions among discrete objects. Depending on the complekityese
relations, different types of patterns originate. The nuasthmon
type of patterns are sets, where the relation is the co-oence of
objects. A well known example of the set pattern is a supétetar
transaction dataset; the set of items that are bought tegbtha
customer is of interest to the business strategists. Negtetare
sequence patterns, where co-occurrence of objects is atigniey
the presence of an order between them. Examples include time

This work was supported in part by NSF CAREER Award IIS-
0092978, DOE Career Award DE-FG02-02ER25538, NSF grant
EIA-0103708, and NSF grant EMT-0432098.
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series data in financial markets, genome sequence dataiimfidsio
matics, etc. Data mining researchers also work with treegaajph
patterns. In tree patterns the object relationship evdlveshier-
archical manner, and in graph patterns the relationshipastlgn
arbitrary. Mining web log data, XML or semi-structured date
examples of tree mining, and mining chemical compoundsiiag d
discovery is an example of graph mining.

1.1 Related Work

Although FPM is a very mature research area, developmem of a
FPM library has mostly been ignored. Since the commencenfent
FPM research with the legendaapriori itemset mining paper [1]
over a decade ago, several hundreds different scholaityesrhave
been published. Some proposed algorithmic improvemeatses
covered different variations of FPM problems, such as makim
frequent [2] or closed frequent pattern mining [13] and saiae
veloped algorithms for mining new patterns, like DAG (Diest
Acyclic Graph), Free Tree [3], etc. Several others dematestrthe
potential of FPM algorithms by applying them to new fieldgeli
bioinformatics, operations research, intrusion detectiEtc. No
real effort has concentrated on developing a library tamgetiffer-
ent FPM tasks. The closest works are MLC++ [10] and Weka [20].
The former is a collection of classification algorithms. Tatter

is a general purpose Java library for different data minitgp-a
rithms that includes only itemset mining. Besides thesesetlare
some independent application programs developed by &saar
in academia, mostly to evaluate the correctness and peafarenof
their proposed mining algorithms. But they are very spegiin on

a selected format of datasets and are in no way suitable bsaayli
component. They do not offer any standard interface for esedsu

A collection of such algorithms specifically for itemset inig is
available from the FIMI [6] web site. Moreover, several pieal
machine learning software, bioinformatics search todis,, @m-
ploy FPM as the core mining engine, for which they usuallytevri
their specific FPM programs. The unavailability of a gen&iV
library thus wastes enormous time and computation ressudore
programmers and researchers.

We developed DMTL (Data Mining Template Library), a fre-
guent pattern mining library, that provides a unified irded to
mine a range of patterns. Currently the library has implemen
tions for mining four key patterns—itemset, sequence, ted
graph—»but the framework provides the scope to mine newnpatte
also. DMTL adopts a generic design, inspired by the statizef
art generic libraries such as the C++ Standard Templateatyibr
(STL) [16, 11] and Boost Graph Library (BGL) [15], and hente i
provides widespread usability without compromising orcedficy.
The library is generic with respect to the following aspects



Pattern to be mined.

Input data source and format.

Data structure to be used in the mining algorithm.

Storage management.

Mining algorithm/approach.

1.2 Contributions

The major contributions of our work towards the data mininge
munity are as follows:

e DMTL offers algorithms for different pattern mining tasks i
a unified platform. To the best of our knowledge this is the
first effort of this kind in data mining.

DMTL offers flexible interfaces to each of the algorithms, in
cluding each of its sub-tasks so that it is very simple for end
users to use it as a library component in their software devel
opment.

DMTL is extensible; new patterns can be mined with very
minimal effort from the end user. Users just need to define

The number of nodes in a patteRis called itssize A pattern

of sizek is called ak-pattern, and the class of frequent (as de-
fined below)k-patterns is referred to &g, Given two patterns

P and Q, we say thatP is a sub-patternof Q (or Q is a super-
pattern of P), denotedP=Q, if and only if there exists a label-
preserving isomorphism fror® to Q; that is, iff there exists a
1-1 mappingf from nodes inP to nodes inQ, such that for all
%.%j € Ry i) Ln(%) = La(f(x)), i) Le(x.X) = Le(f(x). f(x))),
and iii) (x,xj) € By iff (f(x),f(xj)) € Qv. In some cases we
are interested iembeddedub-patterns. In embedded patterns we
modify condition iii) above to allow an edge,x;) in P provided
f(x) andf(x;) are connected iQ. In other wordsP is an embed-
ded sub-pattern @ if P is a sub-pattern of the transitive closure of
Q. If P=Q we say thaP is contained irQ or Q containsP.

A databasev is just a collection of patterns (objects, in database
terminology). Leto = {01,0y,...,0n,} be a set of, distinctobject
identifiers An object has a unique identifier, given by the function
O(di) = oj, whered; € » andoj € 0. The number of objects in

D is denoted by|o|. The absolute supporbf a patternP in a
database is defined as the number of objectszinthat contairP,
given asr®(P,») = |{P=d | d € »}|. The(relative) supporf P

is given as(P,») = EBID)' A pattern isfrequentif its support is

some template parameters to ensure that the library selectsyreater than a user-specified minimum suppoitsup threshold,

the proper mining algorithm to mine that pattern succelsful
Some additional specialized code may be required for effi-
ciency reasons.

We also believe this work contributes to the library deveiept
community in the following ways:

e DMTL adopts the generic software development approach us-
ing C++ templates. Due to the limitation imposed by the pro-
gramming language, it is still very difficult for programrser
to design generic software. Few books [11, 15] are available
that describe an implementation of a generic library. We be-
lieve that the design of DMTL could be an example for other
generic library developers to follow.

Apart from its ultimate purpose of discovering frequent-pat
terns, our library provides several stand-alone utilitigs/ar-
ious patterns. This primarily includes the isomorphismoghe
ing functionality for different patterns. We believe thaese
features can complement the features provided in BGL.

While implementing DMTL, we faced numerous challenges,
mostly related to programming language support for generic
software development. Most of these issues have already bee
identified by several researchers [14, 17], but our workdgtan
as another practical example of those limitations.

DMTL uses several template tricks, which we think could be
tremendously useful for any generic software developer.

2 Pattern Mining Preliminaries

The problem of mining frequent patterns can be stated asvsll
let A = {X1,X%2,...,Xn, } be a set ofy, distinct nodes or vertices. A
pair of nodeg;, ;) is called an edge. Let = {I4,15,...,In }, be a
set ofn distinct labels. LeL,: A¢ — £, be a node labeling function
that maps a node toits ladsl(x) =I;, and letLe : AL x AL — £ be
an edge labeling function, that maps an edge to its lafl@l, xj) =
I.

A pattern Pcan be represented as the p@y,Pz), with labeled
vertex seR, C ¢ and labeled edge sBt = {(x,Xj) | Xi,xj € R/ }.
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i.e., if (P, ») > min_sup A frequent pattern isnaximalif it is not

a sub-pattern of any other frequent pattern. A frequenepatt
closedif it has no super-pattern with the same support. The frefquen
pattern mining problem is to enumerate all the patternssatsfy
the user-specifiethin_sup frequency requirement (and any other
user-specified conditions).

The main observation in FPM is that the sub-pattern relatiate-
fines a partial order on the set of patterns.PKQ, we say that

P is more general tha®, or Q is more specific tha®. The sec-
ond observation used is that@ is a frequent pattern, then gen-
erally all sub-pattern®=<Q are also frequent. More important is
the converse, i.e., P is infrequent andP=<Q thenQ shall also be
infrequent (follows from the anti-monotonicity of frequss. The
prefix of a pattern of siz& is a sub-pattern that consists of the first
k— 1 nodes of the pattern. For efficiency reasons, many FPM algo-
rithms group (at least conceptually) patterns having theesarefix
into aprefix-based equivalence clasghe various FPM algorithms
differ in the manner in which they search the pattern space.

3 Generic Aspects of DMTL

In this section we outline the generic aspects of the Datargin
Template Library.

3.1 Generic Mining Algorithm

While implementing mining algorithms for different patter we
noticed that they exhibit considerable similarity, whialggests
developing a common framework for implementing them. Fégur
1 outlines a generic pattern mining algorithm (pseudo-tdbdat
applies to all commonly explored patterns. In the algoritfmat
shown in the figure)k is initialized to zero andB represents a
global database. Similarly, other related pattern minigorithms
(closed or maximal pattern mining) also conform closelyhvtitis
outline. The algorithm is broken down into the major sulksas
which includesandidate generationisomorphism checkingand

INote that this property does not hold for induced patterns.



support counting (explained in detail in the implementation sec-
tion). By implementing generic functions for these sulksasve
retain the abstraction shown in this pseudocode. The dwdeal of
the algorithm is as follows: the mining process searchagimen-
tally in the pattern space by iteratively applying these-tagks in
each iteration to enumerate patterns of size 1, 2, and so ach E
iteration discovers frequent patterns sized one greadertte pre-
vious till no further frequent patterns exist in the databa3he

Enumerate-Frequent-Patterns([P], min_sup:
Ok.1 = candgen(P])
v candidates € Oy
if (checkisomorphismg)) then
countsupport¢, DB)
if (c.sup> min_sup then
Fk+1 = Fry1UC
for every equivalence clasB] € Fy.1
Enumerate-Frequent-Pattefi®§( min_sup

ONoh,~wNE

Figure 1: Pattern Mining Algorithm

example in figure 2 demonstrates how the generic algorithnksvo
for itemset mining. The database on top left corner of theréidnas

4 transactions. Each row contains a collection of itemsrsepd by
commas. We want to perform itemset mining on this datasdt wit
an absolute minimum support value of 3. The same databaks®is a
shown in its vertical format (explained later in subsect®h.2).
This representation is important in the vertical mining rapgh.
The algorithm first finds all the size-1 frequent itemsetsiiaking

a single database scan. The frequent items from the datétbet w
support value 3 or more are A, C, T and W, which are shown in the
oval to the right of the dataset. Each of these items is ptésext
least 3 transactions. Now, the candidate generation stegrages
six size-2 candidates by joining items from this set. Thesjios
candidates here are shown in the rectangle under the ovad.thit
the joining process in itemsets automatically eliminataglidates.
For joining complex patterns (joining two graphs), this nmaf be

ltemset Mining with a support 3
Datahase
Frecuent Size-1 Ttem
ACTW
Candidate generation
VERTICAL DATABASE —
Tem TAT — Candidate 2-size item
s 1124 : AC, AT, AW, CT, CW, TW
i e 4
D |4 1 Tsomorphism checking
T LR 3 y
W 1,234 4 Candidate generation guarantees
¥ |23 2 unigue (non-redundant) ttemsets.
(Do nothing)
ALL FREQUENT ITEMSET Support Counting
Support | Ttemset Frequent 2-size item
3 AT AC, AW, CT, CW, TW
AC AW, CT, TW .
ACW, CTW 1
4 C, W v
CW -
| Frecuent size & items |

Figure 2: Itemset Mining Example

1. T defines an object that relates some elements.

2. T must adhere to a structure that is defined by a collection of
relational properties.

3. T defines a< operator.

4. Associated with typd there exists a pattern-iterator, which
is used to iterate through the elements of the pattern.

All commonly known patterns in data mining, like set, seqiesn

the case, and we need to employ isomorphism checking toensur rée or graph are refinements of a pattern concept. Theaesi

that each candidate pattern is generated exactly oncelly-ithe
support counting step counts the support of each of the datedi
from the database. This step drops the itemset AT, as it apjrea
only 2(< 3) transactions. The algorithm iterates until the dizeat-
terns are found. All frequent itemsets produced by this ritlym
are shown in the figure. For other patterns, the algorithriovis
the exact same approach as detailed in this example.

The sub-tasks of a generic mining algorithm that we refetoeid

properties of a pattern concept that we refer tpatsern properties
in DMTL are explained in the following subsection.

3.1.1 Pattern Properties

In section 2, we defined patterns in terms of graph abstractio
The choice of graph, indeed comes naturally, since all tite pa
terns are, in a way, specializations of a graph pattern (ésset
special case, which we considered as a graph without any).edge

the above two sections can be developed by using generie algo Hence, a graph can represent all the patterns both condgptua

rithms expressed with C++ function templates. For exampile,
candidate generationstep takes two parent patterns of typand
generates one or more candidate patterns of Typgeere, the algo-
rithm strictly requires that both the input arguments, tbgewith
the output argument, are of the same typge.g., we cannot join a
set pattern with a tree pattern to produce a tree candidéterpa
Theisomorphism checkingalgorithm takes two input arguments
of same typerl (a pattern type) and produces a boolean value to
indicate whether the arguments are isomorphic patternstoine
support count algorithm takes one input argument of pattern type
T, counts its frequency in the entire database and returnsteger
value.

In all the above three generic algorithms, the tifpmodels a pat-
tern concept. It has the following requirements:
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and implementation-wise. Using graph implementation faren
simpler patterns, like set, sequence or tree introducdgdieacy

in the mining algorithm, however, the conceptpzttern property
provides a novel solution to this dilemma. In the implem&ota
section, we explain the way we upattern propertiego ensure a
generic algorithm that does not compromise efficiency. Hewee
explain the different pattern properties that we used.

Relational properties that a pattern type T must conformate,
indeed the graph properties. These properties imposesraions
on graph to formulate patterns like, tree, sequence etc. Nee a
lyzed the pattern space and found that the following progeere
sufficient to describe the most common patterns, but nestedh,
additional properties may be added seamlessly. The piepente
themselves categorized depending on the elements (nadtpss,e



etc.) of a graph on which the constraints are imposed.

1. Edge Relation The edge sefyg is defined assg C Vg x Vj.
Under edge relation category we considered the following
properties.

e no-edgeElements in the patterns are not connected with
any edge.

directed Elements in the patterns are connected with
directed edge. To put it in another way, we can say,
they are asymmetrically related.

undirected Elements in the patterns are connected with
symmetric edges.

cyclic A pattern is cyclic if at least one vertex is re-
flexive on edge relation in the transitive closure of the
pattern, otherwise the pattern possess the acyclic prop-
erty.

2. Vertex

e order Theorderedproperty imposes an ordering on the
neighbors of a vertex, or else the pattern is said to be un-
ordered. Ordering is usually relevant for the tree pattern
only.

3. Degree

e indegreelte_one This property constrains all vertices
of a graph to have indegree 1.

e outdegreelte_one This property constrains all vertices
of a graph to have outdegreel.

4. Label

e unique_label This property requires the labeling func-
tion to be one-to-one (injective). Each vertex thus maps
to a unique label (a common example of such a pattern
is an itemset).

3.1.2 Mining Properties

So far, we discussed that the generic mining algorithm tiTD
advocates can mine any pattern belonging to a pattern cori®efy
in data mining research several variations of the core gengn-
ing algorithms exist, by varying the manner in which we perfats
sub-tasks. We represent those variations in termmining prop-
erty, a user can choose a collection of such mining properties to
select the exact kind of algorithm that (s)he would like toate
for the mining process. It is worth noting that, the miningmwr
erties are independent from the pattern properties. Aryaisabf
existing FPM tasks revealed the following mining propestibat
we mention below. As with pattern properties, new miningpere
ties can also be added effortlessly.

1. Join-type This category influences the candidate generation
phase, in which potentially frequent pattern are generated
During candidate generation, the algorithm typically con-
structs a new pattern gining two parent patterns. The na-
ture of this join is a property itself. A suitably correct alg
rithm has to be provided for the chosen property.

e Fy xF1 A (k+1)-length pattern is constructed by join-
ing ak-length pattern with a unit length pattern.

e Fy x Fx A (k+1)-length pattern is constructed by join-
ing two k-length patterns. This join is usually more ef-
ficient since it generates fewer infrequent candidates.

. Support-counting This category specifies how the support of

are:

e horizontal Indicates that the support for a candidate
pattern shall be determined by counting its occurrences
in the database, testing against each database object.
This method usually involves significant I/O overhead
for large databases.

vertical In this approach, support for a pattern is de-
termined from what is called eertical representation

of a pattern [22]. This vertical representation for a pat-
tern is a list of transactions in which the pattern occurs
and is commonly referred to &ertical Attribute Table
(VAT). A vertical database lists all the patterns along
with their VATS. Figure 2 shows a vertical database in
the table titled “Vertical Database”. Support counting
using a vertical database is typically faster as it reduces
1/0 cost.

3. Transitivity This category indicates if embedded occurrences
of a pattern should be considered in its support counting.

e induced Only induced pattern occurrences are
countec?

e embeddedTransitive closures on the edge relatibn
are included in the support as well. The transitivity
leads to discovery of embedded occurrences of the pat-
tern.

3.2 Generic Storage Manager

Database (back-end) support is an integral part of anyrpattén-
ing task. Since pattern mining datasets are typically langgze,
back-end management becomes crucial to achieving an effigie
plementation. Sometimes a dataset does not even fit in maim me
ory, so part of it needs to be saved on the disk for the alguoriih
continue. Since back-end access is tightly embedded in thiagn
algorithm, it is very difficult for the user to modify the baekd to
obtain scalability or persistence.

DMTL's implementation of back-end database support is gene
through a generic storage manager class. Following the $TL i
erator concept, we decoupled the back-end database frow-the
gorithm using iterators. Any access to the database is dolye o
through the iterators. We also implemented three diffesémage
managers; all provide iterator classes. Discussion abach ef
them is given in the implementation section.

3.3 Generic Input Data Source

DMTL is implemented with an objective to be widely applica-
ble. However, the format of the input dataset is differemtdif-
ferent application domains. For instance, in supermariggtstic-
tion databases, items are usually represented by numeritifigrs,
whereas in bioinformatics, items may use string represientafor
protein or DNA sequences. DMTL takes care of these kinds of
dataset irregularities by implementing a generic tokenizhich is
templatized with various arguments to adapt to a wide vaeét
input datasets.

2Note that for graphs we actually mine connected sub-graphs,

a candidate pattern is determined. Two common approachesand not only induced sub-graphs.
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4 Pattern Property Concept

The generic design of DMTL mining algorithms for all pattern
based on th@attern propertyhas a foundation in Formal Concept
Analysis (FCA) [5]. We explain this next.

4.1 Formal Concept

DerINITION 1. Aformal context (K) := (G, M, 1) consists of two
sets, G and M, and a relation |I. The elements of G are called the
objects and the elements of M are called thtributes of the con-
text. In order to express that an object g is in the relationithvan
attribute m, we write glm ofg,m) € | and read it as “object dhas
attribute m”

DEFINITION 2. For a set AC G of objects we define
A :={meM|glm vgec A}

(the set of attribute common to the objects in A). Correspagig,
for a set B of attributes we define

B':={geG|glm Yme B}

(the set of objects which have all the attributes in B.)

DerINITION 3. Aformal concept of the contextG, M, 1) is a pair
(A,B) with AC G,BC M,A’ C Band B C A. We call A theextent
and B theintent of the concept$A, B). (G, M, 1) denotes the set
of all concepts of the contet®, M, 1).

In DMTL, we considerG as the set of all patterns that we want to
mine,M as the set of all pattern properties drak the relation that
a pattern conforms to a property, th@®, M, ) is a context. Now,

if AC G is maximal a collection of patterns, aBJC M is the set
of properties that are common to all the patternA,ithen(A, B) is

a formal concept of the contef®, M, 1).

Example: If A= {DAG, Sequence, Ordered Tree, Unordered Jree
is the set of patterns anB = {Directed Acyclic} is the set of
properties common to members Af then (A, B) forms a formal
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concept. The set A, i.e. the set of patterns, is the extenhef t
concept and B, the set of properties, in the intent of the epnc

The concept in generic programming adheres with defini-
tion 3, if the objects equate with abstractions (types, itigaar)

and the attributes with requirements. In [18], Willcock ét a
provide a precise definition for concepts, as they are used in
practical generic programming. That definition is an exéshfibrm

of the above definition, where the extensions clarify sevssaies
related to generic software design and programming laregiag

4.2 Formal Concept Lattice

DEFINITION 4. If (A1,B1) and(Az,By) are concepts of a context,
(A1,B4) is called asub-concept of (Az,By), provided that A C
Ay (which is equivalent to BC Bj). In this case,(A2,Bp) is a
superconcept of (A,B1), and we write(A1,B1) < (A2,B2). The
relation < is called thehierarchical order of the concepts. The
set of all concepts ofG, M, ) ordered in this way is denoted by
8(G,M,1) and is called theformal concept lattice of the context
(G,M,1).

Example: The set of allpattern-property formal concepferm a
concept lattice as illustrated in Figure 3. In this figuregrgwvnode
is a formal concept. The corresponding set of objects aniats
of that concept are shown next to it, in boxes with rectangaal
rounded edges, respectively. Every box only list thoseaibjer
attributes that are not implicitly inherited through thdimement
relation (discussed in next paragraph). We can retrievestitiee
set of extents (objects) by tracing all paths which lead déwm
that node. On the other hand, the intents (attributes) cabtagned
by tracing all paths leading upward from that node.

If we consider the node labeled with the formal object DAGejt-
resents a formal concept with objects

{DAG, SequencgJnordered Tregrdered Treg
and with propertie§Acyclic, DirectedEdgé

4.3 Concept Refinement

DEFINITION 5. Concept refinement is the process of obtaining a
sub-concept from a concept. Adding one or more attributelen
intent removes objects from the extent that do not conforthab
property.

Example: We can refine the concept in the above example by
adding one property namecdegree I te_ 1. In the refined con-
cept, the pattern DAG is omitted, as DAG does not conformi® th
property.

4.4 Concept Refinement in DMTL Design

In our generic library implementation, we employed underding
of formal concept hierarchy to develop mining algorithmattban
handle different types of patterns. Any algorithm that veof&r
patterns in a pattern-property concept automatically wdok the
sub-concept. For patterns in sub-concepts, a list of patiesp-
erties that is passed as template arguments matches |paatidl
automatically invokes the algorithm for the patterns bging to
the immediate super-concept. However, there could exisb@e m
efficient implementation for the patterns in the sub-cohesghey
might be comparably easier to mine. For those cases, wedgrovi



a more efficient implementation of the algorithm as an owating
of the template functioR.We discuss the implementation details in
the following section.

5 Implementation Issues

This section describes the implementation details of DMTree
major subsections cover the architecture, data and abgasitof
DMTL respectively.

5.1 Architecture

Figure 4 provides a quick look at the various architectucahpo-
nents (in rectangular boxes) of DMTL. We patrtitioned the pom
nents into two main segments—tfient endand theback end The
front end deals with the core mining process while the back en
provides the necessary storage support.

Generic
Mining
Algorithm

Pattern
Representatior)

Initialize
Mining Algorithm

FRONT END

Count Support

Database
Parser

(generates
level-1 VATSs)

Initialize
Storage Manager

BACK END
Storage Manager

‘ Gigabase ‘ ‘ Memory ‘ ‘ PSTL ‘

Figure 4: High-level Architecture Diagram of the Data Migin
Template Library

5.1.1 Front-end: The Mining Engine

The mining task is initiated with all frequent patterns ofidéh
one. This step is performed by reading the data from a source.
The source could either be a database, a flat file or anotheegso
that is generating the data. This functionality is perfodnbg the
Database Parsemodule (see figure 4). Then the generic algorithm
generates unique candidate patterns through candidatzagiem

and isomorphism checking, as we explained in section 3.1 Th
task of finding the support of each candidate pattern is débelgto

the back end through th@éount Supportmodule.

3If we were expressing algorithms with classes we would pro-
vide the more efficient algorithms as partial template spiei-
tions, but in the case of function templates one must cuyreise
overloading instead. Proposals to add partial speciaizatf func-
tion templates to the language standard have been made dateto
have not been accepted.
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5.1.2 Back end: The Storage Manager

Frequent pattern mining is often performed on very largaskts.
Each iteration of the algorithm generates increasinglgdapat-
terns, and the number of candidate patterns also grows eunstyn
(especially, with low support) and does not fit in memory orstno
machines. In a vertical mining paradigm, associated witin gxat-
tern, a VAT also needs to be stored. Most mining algorithms do
not provide explicit means of memory management nor is theeis
addressed within the algorithm. The DMTL back end is deéitat
to storage management, which stores the patterns, VATsthend
associated one-to-one mapping from patterns to their VATise
back end also determines the support count of candidaterpsitt
and returns it to the front end.

The current state of DMTL has multiple implementations o th
back end—memory, Gigabase [9] and PSTL [7]—each one export-
ing the same interface. The Count Support module can sealgct a
one of these by using template arguments. Gigabase is arddethe
object relational database which has its own storage mamage It
also stores elements (patterns, VATS) in its database f8@LRs a
library of persistent containers, akinto STL inits desiB&TL also
achieves persistence by maintaining memory-mapped desa fil
both the above cases, the mining results and intermeditad|de
VATS) are stored on disk and are available for processingatea
point. Thus, DMTL provides an elegant solution when a memory
based back end fails due to enormous growth of data. A flexible
interface makes addition of a new storage manager type gasg

We also considered using third party object stores as staray-
agers. Lack of flexible libraries for object storage prondpts to
develop our own storage manager.

5.2 Data Types

The most vital data in DMTL are the patterns and their assedia
VATs. Patterns are implemented with a graph structure. Efgm

of a pattern are the vertex or edge labels of that graph. VA&s a
implemented usingt d: : vect or, as they store a list of transaction
identifiers. And for the mapping between pattern and VAT, we u
std:: map. However, pattern structure plays the most important
role in our generic mining algorithm, so we describe it fertin

the following section.

5.2.1 Pattern Structure

In DMTL, vertices and edges are the basic structural bujldin
blocks of every pattern. The most basic interface for a patte
should thus provide methods for adding labeled vertices dind
rected edges between vertices. Figure 5 shows the C++ dass i
terface of the pattern concept that we mentioned in 3.1.sists

of the most basic operations expected from a type modelinf su
concept. A specific pattern (set, sequence, tree, etc.)firsedeby
enlisting the respective pattern propertipat{ ern_props). The
canoni cal _code template parameter maintains a unique code cor-
responding to each pattern and is employed for isomorphisoke
ing. It also provides binary inequality testing operatidhat can

be used to implement th€ operator for the pattern concept. The
graph_nodel is the underlying data structure used for storing the
above representation. A typical example of such a datatenelcs

an adjacency list. This design decision to parameterizstirage
type aims at decoupling the pattern storage from the pattenn
cept, such that an adjacency list based storage could bttstézs

by a sparse adjacency matrix structure. Our design undsrtime
fact that loose coupling between key desigh componentautsatr



for the extensibility of a large software system. From thevab
interface, a sequence suchAas- B can be constructed by invok-
ing theadd vertex({ A") method followed by thedd vertex{ B" )
and add out edge(vl, v2, ejnethods. The Boost Graph Library

tenpl at e<cl ass pattern_props,
cl ass canoni cal _code>
class pattern {

class graph_nodel ,

public:
typedef vector<V_TYPE> VERTI CES;
typedef typename VERTI CES:: const _iterator
CONST_MT;

bool add_vertex(const V_TYPE& v);
bool add_out edge(const V_TYPE& v1,
const V_TYPE& v2,
const E TYPE& e);
bool add_i n_edge(const V_TYPE& v1,
const V_TYPE& v2,
const E_TYPE& e);
CONST_VIT get _nei ghbors(const V_TYPE& v);
CONST_MI T get _rmost _path();

—

Figure 5: Pattern Class Interface

(BGL) [15] provides a more complete set of graph represemtat
and graph algorithms. At this moment we have refrained frem u
ing BGL's graph representations, primarily to keep the giesliex-
ible and open to various possibilities. In the future, we &nati-
lize BGL's graph primitives to standardize our library. Aees in
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Figure 6: Pattern Hierarchy

figure 3, the specific patterns are instantiations of theratispat-
tern concept. Each such concrete concept is representecsdly a
of properties (or constraints) that define the pattern. Rstance,
a directed acyclic graph (as the name suggests) hegclic, di-

to represent a concept is crucial for the implementationusflio
brary. Even though conceptually the properties are coreitte be

a set, from the implementation perspective we treat thenm as-a
dered list of properties. This ordering of properties isassary for
the compiler to match a specialized pattern to an apprepsigper-
pattern, if any algorithmic implementation is not avaifdr that
specialized pattern. This leads to the pattern hierarawy itr fig-
ure 6. Note that in figure 3, a node can have multiple parenite wh
in the pattern tree each pattern has a single parent. Thetamge
of the single-parent characteristic becomes evident wheerealize
that selecting a super-pattern would lead to ambiguitiesase of
multiple super-patterns. Using this pattern hierarchg,ttiee order-
ing of the properties for a pattern is automatically enfdrc&hey
are ordered along the path from the root to a pattern node.
nutshell, figure 3 represents the conceptual (theoretstdd) of the
pattern mining problem whereas figure 6 represents theipahct
(implementation) side of the problem.

In a

We had the following goals while constructing the hierarohpat-
terns:

1. Abstract out the common aspects between the pattern types
and the algorithms,

2. Allow new patterns to be added to the hierarchy by intreduc
ing new properties, and

3. Propagate absence of a lower-level concept implementtdi
a higher-level concept implementation.

The last objective above is a logical extension of usingiglaspe-
cialization (via function template overloading). The mese of a
single parent in the hierarchy tree enables finding the pgltiern
to which control should be dispatched. Our library provioheple-
mentations for what we call the four core patterns—setsjessces,
trees and directed graphs. Apart from being the most popaltar
terns, the core patterns can be considered to mark the cxityple
classes in frequent pattern mining. Sets are at the simpbkoé
the spectrum with sequences and trees (in that order) bgfapis
at the other extreme. The following paragraphs describehlaé
lenges faced in designing the library to achieve the firstgoals.

5.2.2 Pattern Properties Implementation

In order to enable dispatching to the appropriate patternseehe
set of pattern properties as template parameters. Thi$ pattern
properties is encapsulated ipeoplist. Since we model properties
as types, th@roplistis a static list of types provided for collecting
properties. It should be noted that such a type list is acstati
cumulator, i.e., it relies on the template compile-time hadsm
and hence incurs no run-time overhead. A type list gives as th
flexibility to append properties to it, making the designeggnand
extensible. The type list was designed by borrowing ideamfr
two of the C++ Boost libraries—the Boost Graph Library and th
Metaprogramming Library [15]. Since it is simply a contairod
types, the class itself is not complicated and is given irufégr.
The classwl | _prop is used as the terminator of a type list. In ad-
dition to its utility as a type list, th@r opl i st possesses the nice
feature of facilitating upward propagation of propertidis be-
havior is demonstrated in Figure 8. To keep the example simy#
have stripped function parameters and return types thatainesl-
evant for the example. In this example, we create propesassels
and give the prototype of a function that generates caredadbm

a given pattern. As pointed out above, candidate generitione
of the three tasks a mining algorithm must undertake. In tipe fi

rected as its property set. The notion of having a set of properties ure, two prototypes of theandi dat es function are provided—one
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tenpl at e<cl ass prop,
cl ass next_property=nul | _prop>
class proplist {
public:
typedef prop FIRST;
typedef next_property SECOND;

Figure 7: proplist Class Interface

/1] Property class definitions ///
class directed {};

class acyclic {};

class planar {};

class null _prop {};

/Il generic function ///
voi d candi dat es(const proplist<directed>g);

/1l specialized function for DAGs ///
voi d candi dates(const proplist<directed,
proplist<acyclic> >8);

[111] an illustration of how it works /////
proplist<directed> digraph;

proplist<directed, proplist<planar> > planar_graph;
proplist<directed, proplist<acyclic> > dag;

/1] Following function call compiles ///
/1l to generic function. Iy
candi dat es(di graph);

/1] Following function call compiles ///
/1l to specialized function. Iy
candi dat es(dag) ;

/1] Following function call compiles ///
/1l to generic function Iy

candi dat es(pl anar _graph);

Figure 8: Application of Property Hierarchy

for directed graphs and one for DAGs. DAGs do not possess cy-
cles, hence the specializedndi dat es function does not generate
cyclic graphs as candidate DAGs. On the other hand, the igener
function generates all possible digraphs, including cyaties. This
relation between DAGs and directed graphs is reinforcedhiey t
pattern hierarchy in figure 6). Hence, as expected, methlisl ca
with directed graph and DAG as their input parameter typesladvo
invoke the appropriate methods. Tpleanar _graph property list

is now introduced. It should be noted at this point that the pa
tern propertypl anar is not defined in our library. Hence, it is a
new pattern property for representing planar graphs#hL.etenote

the pattern type, digraphs, amd denote directed, planar graphs.
Since the properties definirg are a subset of the properties defin-
ing P, we can sayp; < P». As a result a&andi dat es method call
with pl anar _gr aph as input parameter will invoke the method with
di graph as the formal parameter. Had there been a more efficient
implementation for planar digraphs, that would have beeokied.

To summarize, we have shown how thveopl i st can be used to
select the most appropriate implementation and how a neterpat
can be easily introduced into the framework.
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5.3 Generic Algorithms

The core FPM algorithm shown in Figure 1 was introduced in sec
tion 3.1. Even though we do not enforce a pattern to conforthiso
precise formulation of the mining process, most FPM alfami
(including the ones in our library) conform closely to thistine?
The pseudocode in figure 1 is implemented inftheq_pat _ni ne
method.

tenpl at e<cl ass PATTERN, class M NE_PROPS,
class SM TYPE>
voi d
freq_pat _m ne(const pat_f ankPATTERN>& FK,
const pat_fam<PATTERN>&, int& mn_sup,
pat _fanxPATTERN>& freq_pats,
count _support <M NE_PROPS,
SM TYPE >& cs)

The first parameter to this methaeit _f am is a collection of pat-
terns that belong to the same prefix-based equivalence atass
can be implemented as an STL vector or a list. The third param-
eter,freq_pats, which is passed by reference, is used to collect
the final set of frequent patterns. Our customized contaieér
ther retain the same interface as the popular STL contaorease
simply wrappers around STL containers. Note that in the abov
examplePATTERN is the pattern representation. Hence it is not
just a container parameter but is used to pick the most efficie
implementation along the pattern hierarchy. The actuaptata
argument could represent any pattern. As the name suggests,
count _support class is used for finding the support of the candi-
date patterns in the datasetount _support is templated on the
mining properties and back-end database type. The fornrexds
essary because counting support differs for embedded doded
mining (which is a mining property). The late3\{ TYPE) is neces-
sary for querying the appropriate storage manager to finduhe

ber of occurrences of a pattern. Let us take a closer looknaé s

the key steps insidier eq_pat _mi ne.

5.3.1 Candidate Generation

Pattern types differ in how they generate candidates. Hewyev
there does exist significant commonality among the varyiagy p
tern types. This was explored by us in a previous work [25]e Th
freg_pat _nmi ne method calls theoi n method to generate new can-
didates by joining two frequent patterns. The interfacetffierjoin
method is as shown below:

t enpl at e<cl ass PAT_PROPS,
cl ass M NE_PROPS,
class SM TYPE>
pat t er n<PAT_PROPS,
M NE_PROPS,
SM TYPE>**
join(const
pat t er n<PAT_PROPS, M NE_PROPS,
SM TYPE>* pat i,
const
pat t er n<PAT_PROPS, M NE_PRCPS,
SM TYPE>* pat_j)

4FP-tree is another approach for FPM. Since it is not as
widespread as the apriori based approach, DMTL does naratlyr
support it.



This method takes two pattern pointers and outputs an afragto
tern pointers (an array is chosen, as sometimes more thapatne
tern is created from the join operation). Note that both thtgon
properties and the mining properties are associated wéthpéi-
tern type. Using pattern properties, the join method chedke
most appropriate algorithmic implementation to perforra jbin

for this pattern type. Note that a join between patternsssaated
with an intersection of the corresponding VATs. For examifla
patternA is a set{a,b,c} and another patterB is a set{a,b,d}
and their VAT (list of transactions they occur in) & 4,10} and
{1,10,12} respectively. A join (set union operation) produces one
pattern{a,b,c,d}, and the corresponding intersection of VATs (set
intersection operation) producgs, 10}, which is the VAT of the
new pattern. However, the join method shown here mateeisliz
the pattern join only; the associated VAT intersection iselm the
back end.

5.3.2 Isomorphism Checking

For itemsets and sequences we can circumvent generatimgriso
phic patterns by intelligent candidate generation [1, 2Bksen-
tially, we exploit the lexicographic ordering on the labtsavoid
generating redundant patterns. Isomorphism checking tsn a
be avoided for ordered trees by an appropriate candidatergen
tion scheme [24]. However, unordered trees [12], free tf8s
and graphs [21, 8] require isomorphism testing. The isolmem
checker is provided by theheck _i somor phi smmethod and it is
templatized on the pattern properties. Our library prosigieecial-
ized isomorphism routines for various patterns—directeaplys
and unordered trees, to name a few. The isomorphism cheaker ¢

be used as a stand-alone component and we believe that @ coul

further enrich the isomorphism checking support provideBGL.

tenpl at e<cl ass PAT_PROPS,
cl ass M NE_PROPS,
class SM TYPE>
bool
check_i sonor phi sm( pat t er n<PAT_PROPS,
M NE_PROPS,
SM TYPE>* cand_pat )

5.3.3 Support Counting

The last step in an iteration is to determine the support oflica
dates, and discard ones that do not passtimesup(minimum sup-
port) criterion. The support counting functionality is popted by
the Count Supporblock in figure 4. Since support counting needs
to query the back end, this block acts as a liaison betweefiahe

end and the back end. The support counting module is common

across all the pattern types, since it does not need to knythiag

about a specific pattern. At the same time tlent method is
independent of the back end since tloant _support class is tem-
platized on the storage type. The interface fordbent method is
given below:

tenpl at e<cl ass PATTERN>
voi d
count (PATTERN* pl, PATTERN* p2, int mn_sup)

As we mentioned under Candidate Generation above, a joiatef p
terns in the front end triggers an associated VAT intersacin
the back-end. We provided different back-end implemeuoratiall
storing the same VAT but may be in different formats. For exam
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ple, the VAT stored in the Gigabase database is necess#fdyetht
than that stored in the memory back end. Nevertheless, tie VA
intersection algorithm is the same. Inspired by STL's desige
used iterator concepts to decouple the algorithm from thieahc
data structure. Figure 9 shows how iterators hide the date+e
sentation from the algorithms. The figure shows the sigeatdir

tenpl at e<typename Inlter,
typenane Qutlter>
void intersection(pair<initer, Inlter>itr_i,
pair<initer, Inlter>itr_j,
Qutlter cand_vats);

Figure 9: Using Iterators with Generic Algorithms

thei nt ersecti on method, which joins two VATS to generate the
VATs for new candidate patterns. The first parameter is agfair
iterators pointing to the beginning and end of the contdinatcor-
responds to the first VAT. Similarly, the second parametésrishe
second VAT. The two iterators use the sdmet er parameter since
patterns have to be of the same type to be intersected. Trdeptini
rameter represents an output iterator and is used to ctileciet
of generated VATs. Note that, depending on the pattern, tinare
one VAT could be generated.

To reiterate, the design of DMTL consists primarily of thigeal-
lenging components:

1. pattern structure,
2. pattern algorithms, and
3. back end storage facility.

Along with the above key components, the library containipia
smaller utilities for reading in data from multiple sourcearsing
data in multiple formats, and many others.

5.4 Incorporating new patterns

Representing patterns as property-based concepts allesvs to
introduce new properties, and hence new patterns, withnnaihi
changes to the code. This effectively allows us to mine apg ty
of pattern. This idea of mining arbitrary patterns is novetla
extremely desirable in the data mining community. Let uskwal
through an example to see how a completely new pattern can be
mined. At this time we would like to remind the reader that our
library currently implements only four key kinds of patterrsets,
sequences, trees and graphs. Each of these marks a newostrata
pattern complexity. For this example let us say we want tcenaih
frequent cliques, given an input dataset containing gragltsique

of a graph is a maximal complete subgraph. Suppose we want to
mine all frequenk-cliques, where is the number of nodes in the
cligue. Since a clique is a specialized graph, we can guessta
process of mining cliques might resemble that of mining bsap
Let us reconsider the three core steps required for miniggoat
terns and compare the functionality in each of those for ¢ t
patterns. While the candidate generation step for graphergtes
multiple candidates, the candidate generation step fgue$ needs
to generate only fully-connected graphs. This is much sémjhian
generating all possible candidates. The isomorphism é¢hgand
support counting for cligues does not change from regulaphs
since cliques are specialized graphs. The alert readert magh
that the task of mining cliques is similar to the task of mgin



typedef proplist<directed,
propl i st <connected> > CLI QUE;

typedef proplist<directed > DI _GRAPH;

/1 Specialization for the clique pattern. //
tenpl at e<cl ass PAT, class M NE_PROPS,
class SM TYPE>
voi d
cand_gen(const pat_famxproplist<directed,
proplist<connected, PAT> >& Fk,

1

/] Specialization for directed graphs //

/1 Can be used by cliques. /1

tenpl at e<t ypenane T>

bool

check_i sonor phi sm( pat t er n<propl i st <di rect ed,
T> >* cand_pat);

Figure 10: Adding a new pattern

itemsets. Although they are similar there is a subtle diffiee—
itemsets are guaranteed to have unique labels whereas tiuisthe
case with cliques. This argument reinforces our claim thgties
just differ in the isomorphism-checking step. Even though éx-
ample might seem contrived, it helps us see that a similaicagh
can be taken for any other pattern. In the worst case, thewilier
need to provide implementations for all three stages oépathnin-
ing. From our experience with pattern mining, we can contigien
claim that all the patterns in figure 6 along with many othesch
very few modifications on the part of the user. This has been th
motivation behind the library design and implementatioigufFe 10
shows the interface for the specialized candidate geoeratethod
for cliques. The first parameter is specialized to matchguelior
any of its sub-concepts. The rest of the parameters havedeien
ted as they are not relevant to the example. Clique miningboan
row the remaining methods that are specialized for diregteghs.

6 Challenges and Future Work

The design and implementation of DMTL has helped us appreci-

ate some of the language features provided by C++. While spe-

cialization by overloading, iterator categories, and Enpowerful
concepts are extremely important for generic programmingre

are other aspects that are not equally well explored. Fesuch
asconcept checkingndnamed parameterare features that would
benefit our implementation. Moreover, dispatching basedam
cepts rather than pure type checking would allow partiatisfiea-

tion based on concepts. Even though some of these features ha
been implemented via template metaprogramming and made ava
able in Boost libraries, our experience suggests advastafyan-
cluding these features in the language standard.

The current design of DMTL has substantial scope for improve
ment. For example, our implementation of static lists to aggthe
pattern properties is not necessarily the best design ehdeich

a property-list-based mechanism enforces a strict orglarirthe
properties in order for the compiler to select the appraopripe-
cialization. Ideally, we would have benefited from the suppor
named parametergn C++. With such a feature we could omit
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the properties that did not apply for a specific pattern ara pr
vide property in any order. Whilaamed parameterseems like
a good option, it might result in changes to the interfacelevim-
troducing newer properties in our framework. A differenpegach
to handling dispatching in this scenario would necesstatgort
for concept based dispatching as against type matchingl lshse
patching. Additionally, support for concept checking [18]the
language specifications would enhance development effaits
also explored using theropertyGraph concept in BGL to repre-
sent a set of properties but it did not fit well into our framekvat
that point without compromising flexibility. Thenabl e_i f family

of templates is an approach for enabling certain functiomptates
and class template specialization. It could be used to @digi¢he
same effect as our property list approach. We hope to exfihise
opportunity with other ongoing development in DMTL. Froneth
data mining perspective, DMTL provides quite an extenseteo
FPM algorithms which perform better than existing starahalal-
gorithms. Since DMTL has been an evolving idea, now it is yead
for its first public release after undergoing numerous refieets to
the design. Some performance results based on an earkover
DMTL are presented in our previous work [25]. In the long term
we plan to incorporate mining algorithms in other patteracgs
such as maximal patterns and closed patterns. Our evergahl g
is to extend DMTL to other data mining tasks like classifioati
clustering, and so on.
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Abstract

Design and implementation of generic libraries irtGre based
on conceptual specifications—what if such specifications ha
change? In a quite practical sense, this question arisesubec
of a new proposal for iterator concepts that is under disonss
among G+ library developers. Given the fundamental role of it-
erator concepts, it is important to anticipate which imghetpro-
posed changes have on legacy code. Yet, no tool has beeabdwail
to safely check for unwanted effects. We introduceoaceptual
change impact analysis and apply it to the proposed itesgeci-
fication. Surprisingly, the analysis yields that the pragbierator
concepts are neither (fully) backward- nor forward-coriipatwith
the current, standardized concepts. Since the analysidists the
sources of incompatibility, it can help library designersvoid un-
intended effects of their suggested changes and, in gepevaides

a base for assessing the impact of a conceptual change.

1 Introduction

In the design of today’s generic libraries, so-callestator con-
ceptsplay a pivotal role in two ways. For one, they dterator
concepts, that is, abstractions of pointers that encomppssa-
tions for range traversal and data access at a granulaaityrtkes
them efficient basic building blocks of computations—in gén
libraries, sequential sorting, graph traversal, matrigragions, or
Fast Fourier Transforms, all are expressed in terms oft@ecger-
ations. Second, they are iteratmmceptqd11], that is, abstractions
of types, which group syntactic, semantic, and behavi@glire-
ments on types without being types themselves. Almost &in
faces of the parameterized components of a generic librergxa
pressed in terms of concepts. Together, concepts, thettigréney
typically form, and the conceptual interfaces they definakenout
the conceptual specification of a generic library.

In C++, generic libraries use the hierarchy of iterator concelpas t
was introduced by the Standard Template Library (STL) [21] a
became part of the language standard when STL was accepted (s
[6, ch. 24]). Today, not only the algorithms of STL, MTL, BGL,
Boost [1,13, 14, 26], and of other generic libraries depemthese
concepts, but also a large number of iteraygresthat were mod-
eled after them as well as adaptors to those types and dhearties
that instantiate iterator-based conceptual interfaces.

With the increased experience with STL iterator conceptsy-h
ever, library developers started to encounter problemseakly as
2001, J. Siek pointed out that some generic algorithms aderun
generalized when expressed in terms of the currently doraileer-
ator concepts and submitted a new iterator specificatioodiosid-
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eration by the €&+ standard committee members [20]. Since then,
his proposal has been subject of discussions and of a nunfiber o
refinements [21-24]; the most recent, 5th revision (withitaoithl
authors) dates from April 2004. While this 5th proposal i$ yet
final, its continued discussion indicates a strong intéresgvising

the current, standardized iterator concepts.

Yet, the proposed changes are far from trivial: they incltigein-

troduction of new concepts, the omission and modificatiooldf
ones as well as modifications to the interfaces of the geadgic

rithms. It is therefore non-trivial to see whether any adeezffects
on legacy code exist. It is also non-trivial to determine thiee the
changes to the iterator hierarchy have precisely the sftbet au-
thors intend them to have. Given the relevance of iteratirthe
same time, and their ubiquity in generic libraries (irty; it is of

great importance that the impact of the introduced charge=il

understood. Until now, however, their impact had to be deteed

by hand.

In this paper, we provide an automated assessment of thetropa
the proposed changes to the iterator specification. Oussisent

is based oronceptuathange impact analysis (CCIA), i.e., change
impact analysis applied to the conceptual specificationlifrary.
CCIA is a general analysis technique for generic library ntei
nance that we currently develop. For this paper, we appligd o
prototype to two versions of the iterator hierarchy: the dained

in the working draft of the €+ standard [10] and the one submitted
to the G+ committee by Siek, Abrahams, and Witt [24] (referred
to from now on a®ld andnewversion, respectively). In our case
study, we concentrate on the two kinds of intended impadtttiea
new proposal sets out to make, namely to: (i) ensure backward
and forward-compatibility between old and new iteratorduiehy;

(i) reduce conceptual requirements on the parameters bB&jb-
rithms, to increase their genericity.

To our surprise, the analysis shows that neither backwaod- n
forward-compatibility hold—as a consequence, algoritteguire-
ments are not always reduced. At the same time, the analysis p
points the parts of the specification that break compattjbithus
can mark the first step towards aligning intended and actisal e
fects. In some cases, it is the original concept definitia thakes
forward-compatibility hard to achieve, in other cases, gjoals
of the new proposal impede backward-compatibility. In yiteo
cases, compatibility problems come from the version we efios
the comparison—we use the iterator specification of the messt
cent (working) draft of the & standard, which was not available
at the time of the new proposal.

Whether some, or all, of these incompatibilities are tdd&ais a
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Figure 1. Concept tables of thenpuTiTERATORCONCEPL Of the old hierarchy [10, Table 73] and its refactomg into the two concepts
SINGLEPAssITERATORANd READABLEITERATOROf the new hierarchy [24]
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(a) Old, standardized hier-
archy

Figure 2. Old and new iterator hierarchies. The old hierarchy

(a) is traversal-oriented, but mixes in value access. The ne
hierarchy separates the two concerns into a refinement hiera
chy of traversal concepts (b.left) and 4 non-refining concep for

value access (b.right).

(b) New, proposed hierarchy

guestion the analysis does not seek to decide. The only geirpo
of any change impact analysis, not just our CCIA, is to flag an
impact—whether this impact is wanted or unwanted, accéptab
unacceptable, is for the developers to judge. In the pdatiaase

of the iterator proposal, one has to weigh the benefits okasmd
genericity against the risk of breaking legacy code. Auticady
generating a complete list of incompatibilities, our asédycan pro-
vide the base for such decision. Moreover, if the suggestadges
lead to a revision of the currently standardized concepies,de-
tected incompatibilities can guide programmers in migiato the
new concept specifications.

While the core algorithm of our CCIA can deal with any concep-
tual changes, we focus in this paper on its application tctiamge

of iterator concepts. We prepare the discussion of the dasky s
with a description of the analysis proper, first informalty $ec-
tion 3, then technically in Section 4. Section 5 details teup of
the case study and Section 6 interprets the findings. To ¢gedie
necessary background, Section 2 summarizes the two iterare
cept hierarchies under consideration. Sections 7-8 disalated
and future work, along with our conclusions.

2 lterator Hierarchies

In generic libraries, algorithms are specified in terms ofuree-
ments on types, not in terms of types themselves. For thesrige
specifications, concepts are essential as they group ezgeints
and allow expressing them in an abstract way. In specifyéagire-
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ments abstractly, concepts might seem to resemble abslaases
or interfaces from object-oriented programming but theeetao
fundamental differences. For one, the requirements gobigye
concepts comprise syntactic, semantics, and behavioogdepr
ties. Concept descriptions therefore contain not only atigres
but also semantic constraints and complexity expressidbsc-
ond, and more importantly, concepts reside outside of typems,
to avoid imposing any requirements other than those of time co
cept description—in particular any implementation reeuoients,
as they necessarily are established by abstract supersla€®n-
cepts and their formalization are an area of active invastig by

a number of researchers (e.g., [25, 28]). Since we opera&non
intermediate representation of concepts, however, ouysiras
independent of a particular formalization.

For the discussion of the old and the new iterator conceptasge
the following notation. Aconcepthas one (“single-parameter con-
cept”) or more (“multi-parameter concept”) parameters gralips
requirement®n its parameter(s). For the analysis, it suffices to con-
sider syntactic requirements; Figure 1 contains a humbekai-
ples. There exist different kinds of relationships betweemcepts,
requirements, and type parameters: A particular type (oesyfor
multi-parameter concepts)odelsa concept when it fulfills all re-
quirements of the concept. A type parameter of a libraryriate

is constrainedby a concept if all actual parameter types have to
model this concept. A concept, finally, ceafineanother concept
where therefining concept includes all requirements of tledined
concept; Figure 2 shows two refinement hierarchies. Refineme
becomes more complicated when multi-parameter conceptisiar
volved, because the parameters of the refining concept naust b
properly mapped to the ones of the refined concept.

Iterators are abstractions of range traversal and valuesaccin
the old iterator hierarchy, each concept includes operataf both
kinds. As the authors of the new iterator proposal point baty-
ever, two problems arise when combining the concerns oferang
traversal and data access. On the one hand, some iterags typ
are intuitively incorrectly categorized with respect teitttraversal
protocol because of the additional value-access requirtsribey
have to meet; for example the iterator typector(bool):: iterator ”
cannot model &NDoMAcCCEsSITERATORCONCEP, although the it-
erator types of all other vectors canH{iCStandard Library issue
96 [4] and Herb Sutter’s paper [29]). On the other hand, sdgw a
rithm requirements are stricter than necessary, becalise-aacess
requirements cannot be separated from the requiremen@nge r
traversal. The new iterator concepts therefore are diviiledtwo
groups: traversal concepts on the one hand, value-accesspts

on the other hand.
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Figure 3. An example of a change in the conceptual specificati of a library

New and old iterator hierarchies are depicted in Figure 2 (fo
brevity, the suffix TEraTorhas been omitted in all concept names);
concept refinement is represented by the usual arrows. Aigtive
shows, the new hierarchy has five traversal concepts, qamels
ing to the traversal requirements that the old hierarchyndsfiall
value-access operations of the old hierarchy (except thexinper-
ator of RANDOMACCESYTERATOR) have been factored out into alto-
gether four additional concepts. Every new concept, thustains

a subset of the requirements of an old concept. Convergdly, i
possible to reconstruct an original concept by re-definirasithe
refinement of particular traversal and value-access casicep

In illustration, Figure 1 shows the olthpuTITERATOR concept,
which, in the new hierarchy, is split into two conce@syGLEPAS-
sITERATOR and READABLE I TERATOR; their combined requirements
correspond to the originaNpPuTITERATORFequirements. The iter-
ator proposal asserts that all new iterator concepts arentaaid-
compatible with the corresponding old concepts and thaoldll
concepts are forward-compatible with the corresponding orees:
“iterators that satisfy the old requirements also satigfgrapriate
concepts in the new system” and “iterators modeling the naw c
cepts will automatically satisfy the appropriate old regments.”
We will return to the details of compatibility in Section 5oiRthe
complete specification of the two hierarchies, we refer éirttioc-
umentation [10, ch. 24], [24].

3 Example

Instead of plunging directly into the technical details, weoduce

cept,READABLE, consists of one requirement related to data access.
For backward-compatibility, thevepuT concept is part of the new
specification but it only refines the newly introduced consemd
does not have any requirements of its own. The constrainteen
type parameterit2”, finally, are rewritten tolNCREMENTABLE and
READABLE.

As in the official iterator proposal, the intention behind tthanges
is to separate orthogonal concerns and to increase thelgriaynu
of concepts, yet without compromising compatibility. CCtaAn
help to automatically check whether the changes have teadetl
effect. In the particular context of our example, CCIA caiphe
check: (i) whether thénpuT concept represents the same set of re-
quirements in the new and the old specification and (ii) wéethe
genericity of the algorithmeégual” increases by rewriting the con-
straints on ft2.” CCIA cannot help to check whether the refactor-
ing itself is correct and, for example, the orthogonal consédave
been factored out into the right concepts; questions of khmt,
however, can hardly be automated. In the remainder of tlcisose
we describe the steps of the CCIA.

The analysis starts by encoding the original and the modifesel
sion of the specification. The concepts, requirements, el pa-
rameters from Figure 3 and the relations between them are-rep
sented in the encoding. Next, the encodings of the two vessio
are compared and the difference between them is computed in a
straightforward procedure. The comparison involves iifigng
entities and relations that exist in the old but not in the e
sion of the specification, and vice versa. As a result, fonele,
the conceptincREMENTABLE is marked asddedsince it exists in

CCIA by means of an example. Given the original and a modified the new but not in the old version.

version of the conceptual specification of a library, we destiate

how the impact of the changes is determined and how the analy- From the encoding, a directed dependence graph is corefruct

sis can be used to confirm, or question, (implicit) assumtibat
underlie the changes.

Figure 3 shows the original and the modified conceptual §ipaci
tion of a simple, generic library loosely based on the iwrabn-
cepts introduced in the previous section. The original eptgal
specification of the library consists of one concept and dge-a
rithm, INPUT @and “equal”, respectively. The algorithmegual” has
two type parameters,iti” and “12”, both constrained by the con-
ceptinpuT. In the new version of the specification three new con-
cepts are added, theruT concept is modified, a refinement hier-
archy is introduced, and the constraints o™ are rewritten. The
new CONCEPINCREMENTABLE contains two requirements related to
range traversal. Itis refined by the concepicLePAss, which adds
the ability to compare two iterators for equality. The thielv con-
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which represents the two versions of the specification. Engoes
correspond to concepts, requirements, and type parameteite

the edges represent the direction of change impact prdpagat-

plied by three kinds of relations: concepts including reejpients,
concepts refining concepts, and concepts constrainingogyzene-
ters. A dependence graph for the specification in Figure Bas/a

in Figure 4.

The core algorithm of the analysis consists of two stagest,Ehe
impact of the changes is propagated along the edges in thh tpa
identify the type parameters that may have been affectecbrfsie
for every such potentially affected type parameter, thensed (and
appropriately reduced) dependence graph is traverseddaHin
sets of requirements that were added or deleted. For thept&am
in Figure 3 the analysis detects that for the type parameterthe
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Figure 4. The dependence graph constructed for the specifica
tion from Figure 3

requirements (void)r++” and “xr++” were removed andrt+” was
added and that for the parametee" the requirements (void) r++”,
“sr++”, and “a==b” were deleted andrt+” was added.

At this point the analysis is complete. What is left to dopisdlate
the results back to the 2 original assumptions the libragigiesr
made, namely, that the conceaptruT still represents the same set
of requirements as before and that rewriting the conssaintthe
parameter it2” of the algorithm ‘equal” increases its genericity. As
it is easy to see now, neither assumption is justified. For tiree
requirements of the conceptrut have changed. The change is
implied by the change of requirements for the type pararnfietet,
which is constrained binpuTin both versions of the specification.
Compared to the old specification, not only two requiremenés
deleted (%r++" and “(void)r++"), but also the requirement {#+") is
added. The new conceptruT, therefore, is neither forward- nor
backward-compatible with the old concept of the same namen E
if it would be compatible, the genericity of the algorithregtial”
would not have been increased. Although there are somereequi
ments its parametent2” no longer has to meet (Void) r++”, “ xr++",
and “a==p"), it has instead to meet an additional requiremenit:(’).
Therefore, the genericity of the algorithm has not stristlyreased.

4 Conceptual Change Impact Analysis

As the example in the previous section shows, CCIA is a twsspa
procedure. The first pass propagates changes, thus isialbgent
forward-reachability problem that determines whetyhave been
impacted. The second pass depends on the particular chrapgeti
of interest, thus varies between different applicationsdse of the
new iterator hierarchy, where we would like to understand tiee
change impacts compatibility and the requirements on #kgor
parameters, this second pass is a backward-reachabitiblepn,
combined with special filters. This section discusses initite 3
major parts of the CCIA that we informally introduced in Sent3:
the representation of a conceptual specification and itsgghahe
data structure to store relevant relations and changegqemdence
graph; and the analysis itself.
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4.1 Intermediate Representation

Six constructs suffice to represent the conceptual speificaf
a library: 3entitiesand 3relations directly corresponding to the
relations that concepts establish (see Section 2):

e Type ParametersStatic parameters of the interfaces of a li-
brary

e Concepts Sets of requirements

e Requirements Operations, associated types, and any other
properties required from actual parameters

e Constrains-relationsRelations between type parameters and
concepts

o Refines-relationsRelations between concepts

e Requires-relationsRelations between concepts and require-
ments

For example, the conceptNnGLEPASSITERATOR(See Figure 1) con-
stitutes 4 requires-relations, defined by the 4 requiresésited

in its concept table, and one refines-relation, to the cdanbep
CREMENTABLEITERATOR (See Figure 2). The type parameter”

of the algorithm équal” we discussed in Section 3 constitutes one
constrains-relation to thevpuT iterator concept.

By definition, a change implies a “before” and “after.” Werthiere
decided to encode the new and the old versions of a concept spe
ification together and to express the changes as annotathons
entity or relation that exists in the new version but not i ¢fd one

is marked asdded and any entity or relation that exists in the old
version but not in the new one is markeddedeted Since entities
are “stand-alone” constructs, connected by relations, antyange
in type parameters, concepts, or requirements does nat afifiy
other parts of the conceptual specification unless it is ggaped
by requires-, refines-, or constrains-relations. To comploé¢ im-
pact of changes, it therefore suffices to focus on added etetel
relations.

In the current prototype, we perform the annotationadgdedand
deletedmanually; if concepts were first-class citizens, a compiler
could easily perform the same task.

4.2 Dependence Graph

The six constructs representing a conceptual specificatiturally
map to vertices in a graph, where edges capture the depeeslenc
between them. Using a dependence graph, we can formulaaé the
gorithms of the analysis in terms of graph algorithms andstare
intermediate results by updating the graph.

As suggested by the representation of change discusseé preh
vious subsection, the graph is constructed from both the aveaiv
the old version of the conceptual specification of a librdngtead

of presenting the full algorithm for graph construction, edend

the graph from Figure 4 to show the details, for simplicitgyir
ously hidden. The extended graph is listed in Figure 5. As the
figure shows, every entity, but also every relation is regmésd by
amainvertex along with one or more parameter vertices; the only
exception are type parameters, which are represented gk si
vertex only since they, obviously, do not have parametegmth
selves. Main vertices are labeled with the entity or refaticey
represent, while their parameters are unlabeled. Sincextémaple
contains only concepts and requirements that depend oreoamp



O refines-relation of the current search path is an added vertex, and on addeckger
< requires-relation if the root is a deleted vertex. The edges in the discoverdaspa
v constrains-relation are marked as change-propagating edges. The resultindieadodi
A INCREMENTABLE = .~ dependence graph is used by the second pass of the analysis.
: In this second pass we seek to answer whether the two corieept h
archies are compatible and whether the genericity of alyos has
increased. Both questions are addressed by the algorithonilded
below (see Algorithm 1: Constraints Change). Given an watyit
type parameter and the dependence graph from pass 1, this alg
rithm finds all requirements that were added or deleted fatrtlpe
parameter, i.e., all requirements implied by any of the traiss-
, refines-, and requires-relations reaching that type. eSancon-
straint can be added or deleted multiple times, throughewfit
_ ) changes in the relations, ti@onstraints Changalgorithm records

\}5 v - with every change the path in the graph that leads to thisgehaf

\ Q

Y e - - ;
/'”ﬁf'\ . , (12 > high-level definition of the algorithm follows:
g ? N . )

- - 2 Algorithm 1. Constraints Change.

S ==

(V°'d)r++ oot D Input g, a dependence graph where all change-propagating edges
Figure 5. The graph from Figure 4, extended by previously hid are markedT, a type parameter vertex.
den vertices Output R, a set of tuplegp,S) such thatp is a path ing from T
to a modified vertex] andSis a set of paths from to the added or
deleted requirements dnthat result from the change m
Local reachingpaths a container of the results @find changds
Notation and subroutines

',/" '\
B)/J

eter, all entities and relations have only one parametéexei he
edges represent the direction of change impact propagagoyin-

vert the dependencies that exist in the conceptual spewmfica 1. path A path in a reversed dependence graph.

2. forward or cross edgeAn edge(u,v) wherev is colored black
and not an ancestor afin a search tree.

3. last(): Given a path, extracts the last vertex.

4. significantverteX): Given a parameter vertex, finds the main
vertex of the corresponding relation or entity.

The extended graph in Figure 5 consists of the same 4 concepts
5 requirements, and 2 type parameters as the simple gragb-in F
ure 4. As in the simple graph, a solid line indicates that a con
struct exists both in the old and the new specification, aethsh
and-dotted line that it is part of the new specification oalyd a
dashed line that it is part of the old specification only. Fxara-

ple, thelnpuT concept exists in both versions of the specification, Al. [Filter and reveri ] g’ is g with all edges reversed and non-

the requirementr#+" only in the new, and the requiremengvéid propagating edges removed. _

yr++” only in the old specification. Type parameters are related t A2. [Find change$Run depth-first search ap’ with T as the root
concepts through constrains-relations, concepts areedeta con- vertex: o

cepts through refines-relations, and concepts are related)tiire- A2.1. If a vertex marked as added or deleted is discovered, record
ments through requires-relations. For example, the dastige current path irreachingpaths mark vertex black, and backtrack
from the parameter of the (single-parameter) conbeptTthrough depth-first search.

a constrains-relation to thet3” type parameter means that any ac- AZ2.2. If a forward or a cross edge is detected in the depth-first
tual type that binds ft2” had to model thenput concept inthe old ~ Search, recursively ruffFind changejsfor the target of that edge.
specification. The dashed-and-dotted line from the paremmt Merge all detected paths with the current path and recondetich-

INCREMENTABLE through a constrains-relation to#” means that ~ ing-paths _ _
any actual type that bindsi” has to model théNCREMENTABLE A3. [Process Changed-or each pattp in reachingpathswheres
concept in the new specification. is significantvertexlast(p)):

A3.1. If sis a constrains-relation, flatten the requirements of the
. . constraining concept. Record the tufye { paths from the flattened
4.3 Algorithm Constraints Change concept to requiremenysin R.
A3.2. If sis arefines-relation, flatten the requirements of the refined
After the graph is constructed, the analysis performs twsses concept. Record the tuplg, {paths from the flattened concept to
In the first pass, the impact of changes is propagated: angxver requirement$) in R.
marked as added or deletethy have some impact on any of the  A3.3. If sis a requires-relation, record the tugle, {one-vertex

vertices reachable from it. After the propagation of imp#e sec- path of lasfp)}) in R.
ond pass of the analysis detects the actual effects of thegeba
While the first pass always describes a forward-reachglgliob- We conclude this section by returning to the example from- Sec

lem, the second pass requires different algorithms, depgiat the tion 3. Suppose we seek to validate the compatibility betwbe
change impact investigated. In this case study, the secasslip old InpuT concept and the corresponding concep¢apasLE and
based on backward-reachability but involves some additilmgic. SINGLEPAssOf the new hierarchy. Before running the analysis, we
first need to state the intended (forward-) compatibilityrégefin-
The algorithm for propagating the impact of changes in paiss 1  ing the InPuT concept as a refinement of these two concepts;
rather straightforward. In short, it is a depth-first seanttere all GLEPass and ReEaDABLE. The analysis then starts by constructing
vertices are found that are reachable from any vertex maaksed the dependence graph of the 4 concepts invol\BeglaLEPASS re-
added or deleted. The search stops on deleted verticesiibtihe  fines INCREMENTABLE), their requirements, the requires-relations,
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and the refining-relations; the resulting graph, we haesaly seen

in Figure 5. We currently need to distinguish by hand whicti-en
ties and relation are old, and which ones are new. Once tlphgra
is created, theConstraints Changelgorithm is executed.Con-

and has two parametersitér” and “value.” Line 2 means that the
requirementVo; | a; xa = 0;”, with parameters {” and “v”, exists
in both versions, i.e., there exists a concept in the old gacmhcept
in the new version that both include this requirement. Lirss8o-

straints Changehen finds all requirements that have been added ciates this requirement with the newly added contgptTABLEIT-

w

or deleted for each of the two parametens™and “i2” of the al-
gorithm “equal” (see Section 3 for the complete list). To decide
whether compatibility holds, finally, the added and deletsglire-
ments need to be compared. In the current prototype, we wimpl
check whether every deleted requirement was added at Ieest o
and every added requirement was deleted at least once. ifyub s
comparison could find false positives, for example, if a telae-
guirement continues to be associated with a type parantetargh
another, unchanged path in the graph. For this particulatyst
however, we are able to rule out those false positives: sitice
iterators are re-factored, no old and unchanged path remadm
the general case, false positives can be eliminated in d, tfur-
ward pass that checks for any added or deleted requiremetherh
other paths exist that neutralize the effect of addition @etion,
respectively. We have not yet implemented this pass, bualtiee
rithm Constraints Changés prepared insofar it already associates
changes and paths.

5 The Study

We now turn to the core of this paper, the case study, whichezpp
CCIA to two versions of (conceptual) iterator specificationin
this comparison, the original iterator specification isstakrom the
C++ working draft [10], the new version from the iterator progbs
submitted to the €+ standard committee [24].

Before the analysis can be conducted, the conceptual spaitifis

have to be encoded in a form from which the dependence graph

(see Section 4.2) can be constructed. Unfortunately, tiisding
cannot be automated. Although large parts of an iteratarifspe-
tion in C++ are provided as a table of validt€&expressions (see,
e.g., Figure 1)—which in fact could be parsed and automlgtica
processed—these tables are supplemented by auxiliary ai qu
fying definitions in natural language, sometimes given byanse
of examples. Further syntactic and semantic requiremeatdis-
persed throughout the documentation—manual encodingssuti-
avoidable. As one might expect, however, not all semi-fordea
scriptions map directly to a machine-usable format.

In this section we first specify our encoding scheme and éxpla
for each kind of encoding how it is constructed. Next, we thst
parts of the documentation we could not “naturally” expriessur
encoding scheme and make explicit the decisions we theréfmxt

to make. We end the section with a description of the setupef t
study and the format of the results.

5.1 Encoding Scheme

We encode the specification in terms of the entities andioalsit
introduced in Section 4.1. An encoding of an entity or relaton-
sists of a row of text, which itself is a triple of: a tag, capending
to the encoded entity or relation (i.&ype, Concept, Requirement,
Constrains, Refines, Requires); the relation- or entity-specific in-
formation; and a flagAdded, Deleted, None) that indicates whether
the entity or relation exists in the new but not old, old but new,
or in both specifications.

An excerpt of the encoding is shown in Figure 6. Line 1 incésat
that the concepWriTaBLEITERATORWAS added in the new version
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erATOR and line 4 specifies that’riITABLEITERATORrefinesCopy-
CoNnsTRUCTIBLE Lines 5 through 8 show that the parameter of the
algorithm ‘iter_swap”, “ Forwarditerator”, was constrained by theor-
WARDITERATORCONCept in the old version and is constrained by the
WRITABLEITERATOR and READABLEITERATOR concepts in the new
version. The full encoding, of 330 lines, comprises bothatter
specifications and the conceptual interfaces of STL algmst It

is available on the accompanying web-page [2].

Although all encoded specifications are extracted from theud
mentation, the different kinds of encoding are based orewifft
parts of the documentation and require different degreevant-
ual intervention. Concepts, to begin with, are relativegye to
encode. Since each table in the documentation corresporaiset
concept, we can almost mechanically create one concepy peti
table. We then only need to infer from the syntactic requestn
in the concept table how many parameters the concept hdse if t
requirements refer to only one modeling type, the conceptona
parameter only. All iterator concepts except therPuTI TERATOR
concept in the old, and th&/rITABLEITERATORCONCEPL in the new
specification are single-parameter concepts.

Encodings for requirement entities, next, are created eneqw
of the concept tables. Since the tables contain valid exjmes in
C++, we can use thealid-expressions notatiothat Stroustrup in-
troduced [28]. This notation, very simply, specifies regmients
in terms of ordinary €+ expressions. Using# as specification
language makes minor adjustments in the interpretatiom aba
pression necessary; the only deviation from the €2mantics that
is important in our context, however, concerns construekpres-
sions. In G+, the semantics of the expressian&:” includes the
declaration of a variable declaration and its default aoiesion. In
the valid-expression notation, the expression refers tmby vari-
able declaration. Following the valid-expression notatifor ex-
ample, the requirement4 with the result convertible to” (see the
concept table oREaDABLEITERATORIN Figure 1) is encoded ag'‘a

; X:value_type v = *a;” (Where, as just explained, the first expression
denotes a declaration only, no default construction). Eeghire-
ment is recorded only once, i.e., if two concepts have a remeént
that can be represented by the same abstract syntax, weeethied
requirement only once, but add one requires-relation th eathe
two concepts. Again, a concept-aware compiler would haeadly
identified requirements that are identical at an abstraet.le

While the encoding of requires-relations follows diredtlgm the
requirements we just discussed, the creation of refinesioak de-
mands careful reading of the working draft of the+Gstandard,
since the refinement information is given at different psairethe
document. In the new iterator proposal, this task is madelsinas
all refinement relations are always stated in the table hgadi

The type parameter entities and their constrains-relstitinally,
are encoded based on the section in the new iterator profiegal
lists all changes to the conceptual interfaces of algosttimat re-
sult from the proposal. The changes are expressed as reuldgte
of the form “X — Y” where X andY are type parameters that are
constrained by concepts of the same name.

In illustration, Figure 7 lists the rewrite rule that apgli® the sec-
ond occurrence of the conceptual constranrU T in the two STL



Type, "i ter_swap:: Forwardlterator", NONE

O~NOUIAWNE

Concept, "Witablelterator","Iter, Val ue", ADDED
Requirement,"Vo; | a *a =o0;","l, V', NONE
Requires,"Witablelterator","Value o; Iter a; *a = o;","lter,Value","I, V', ADDED

Refines,"Witablelterator","CopyConstructible","Iter","T", ADDED

Constrains,"Forwardlterator","iter_swap::Forwardlterator","lter", DELETED
Constrains,"Witablelterator","iter_swap::Forwardlterator","Iter", ADDED
Constrains, "Readabl el terator","iter_swap:: Forwardl terator","Iter", ADDED

Figure 6. An excerpt of the specification encoding, illustréing each of 6 encoding kinds

INPUT (2) — INCREMENTABLE aNdREADABLE
equal, mismatch
Figure 7. Example of a rewrite rule, applicable to (the secod
occurrence of)InpuTin the interface of the algorithmsequal and
mismatch . Parameters constrained byinpuT (2) are to be con-
strained by INCREMENTABLE and READABLE.

algorithms ‘&qual” and “mismatch” and replaces there the (oldj{
PUT iterator concept by the two (new) conceptCREMENTABLE

and READABLE. Assuming that the corresponding concepts and

type parameter have already been encoded, each rewriténené
fore constitutes the encoding of at least 2 constraingioalst one

deletedrelation to the constraining concept in the old version and

addedrelations (1, or more ifr is a set) to the constraining con-
cept in the new version. In the proposal, each rewrite rulgcis
companied by the list of algorithms for which constraintsudd be
rewritten.

5.2 Design Decisions

The requirements of a conceptual specification often areeszpd
in a conditional form. For example, the return type of thadsal
expression #a” for FORWARDITERATORIS stated asT if X is mu-
table, otherwise const T& ” (Where T denotes the value typ& the
type of the modeling iterator) [10, Table 75]. Other coratifil
specifications in disguise have the form of optional (typedld-
cation or different return types of overloaded expressioBsice
in our scheme, conditional requirements cannot be exptdasa
straightforward way, we had to modify the conceptual highees
by introducing new concepts that represent alternativedbras of
conditions.

In the old hierarchy, we introduced the 3 concepiu-
TABLEFORWARDITERATOR, MUTABLEBIDIRECTIONALITERATOR, and
MUTABLERANDOMACCESYTERATOR, corresponding to th8f muta-

ble"-condition in the specification. In the new hierarchy, we re-

placed the conceptvaLuel TERATOR by the two conceptREAD-
ABLELVALUE ITERATOR and WRITABLELVALUE I TERATOR, tO capture
the optionalkv-qualification of the return type of the dereferencing
operator %.” Moreover, we added the conceR&ADABLERANDO-
MACCESYTERATOR and WRITABLERANDOMACCESITERATOR @S re-
finements ofRaNDOMACCESYTERATOR, t0 match the precondition
“pre: a is a readable iterator” of the “a[n]” operation and the pre-
condition ‘pre: a is a writable iterator” of the “a[n]=v" operation,
respectively [10, Table 77]. For a different reason, finallg intro-
duced the concep®asicOUTPUTITERATORANABASICWRITABLEIT-
ERATOR. They are single-parameter variants of the concepts
PUTITERATORANdWRITABLEI TERATOR, Which have two parameters,
thus cannot be directly refined by any single-parameteatidecon-
cept.

We also had to make a decision whether or FofwARDI TERATOR
and MUTABLEFORWARDITERATOR refine bothInpPuTITERATOR and
OuTpuTITERATOR. This relation is not clear, since the-€standard,
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Old concept Corresponding new concepts

INPUT READABLE, SINGLEPASS

OuTPUT WRITABLE, INCREMENTABLE

FORWARD READABLE, READABLELVALUE, FORWARD
MUTABLEFORWARD READABLE, READABLELVALUE, FORWARD,

BASICWRITABLE, WRITABLELVALUE

READABLE, READABLELVALUE,
BIDIRECTIONAL

BIDIRECTIONAL

MUTABLEBIDIRECTIONAL READABLE, READABLELVALUE,
BIDIRECTIONAL, BASICWRITABLE,

WRITABLELVALUE
READABLERANDOMACCESS READABLE,
READABLELVALUE, RANDOMACCESS

READABLERANDOMACCESS READABLE,
READABLELVALUE, RANDOMACCESS
WRITABLERANDOMACCESS WRITABLE,
WRITABLELVALUE

Table 1. Correspondences between the old and the new iterato

concepts

RANDOMACCESS

MUTABLERANDOMACCESS

on the one hand, states in the introductory paragraphs itetla¢or
specification that th&orwaRDI TERATOR concept includes the re-
quirements of thenpuTITERATORaNd OUTPUTITERATOR CONCEpLS.
On the other hand, the tabular specification of Fb@waRDI TERA-
TOR concept contains requirements that conflict with this state
(see library issue 299 on thet€standard web-page [3]). After
careful consideration we have decided to include the refémerim
our specification as it seems to reflect the common undetisgnd
of the iterator concepts.

Table 1 lists all concepts that are included in this caseystliohg
with their correspondence relation. Using this table, catiliity
can be decided row-wise: a concept in the old hierarchy isdoa-
compatible if any type modeling the concept also models #ve n
concepts in the same row. Conversely, a concept of the nearhie
chy is backward-compatible if every modeling type also nitee
old concept in the same row.

5.3 Setup

The setup of the case study is now easy to explain. To check the
compatibility between the old and the new concepts, we gabce
essentially as already illustrated in Section 4.3: basetherex-
pected compatibilities defined in Table 1, we redefine allcud-
cepts in terms of their counterparts in the new proposal, \ve
mark all requires- and refines-relations from the old speztion
asdeletedand theradd refines-relations from every old concept to
the corresponding new one(s). Next, we create 9 type paeasnet

one per concept parameter of the old hierarchy (recall thextet

are 8 concepts in the old hierarchy aodTpPuTITERATOR has 2
parameters)—anddd and delete constrains-relations that reflect
their changed constraints from the old concept to the new cor
responding concepts. Then, we call the routine for constwc

the dependence graph and apply the algori@omstraint Change

to each type parameter we have added. If any requirements are



Con. Requirement
1|0 typename lter::value_type; b
2 (@] Iter r; lter q= r++; f
3|0 typename lter::difference_type; b
41 0 typename lter::pointer; b
5| 0 typename lter::reference; b
6 (@] Iter r; const Iter& q = r++; b
7 (@] Iter r; Vo, xrtt = 0; b
8 | Iter r; lter q= r++; f
9 | I typename lter::difference_type; b
10 | | typename lter::pointer; b
11 | | typename lter::reference; b
12 | Iter r; r++; b
13 | |1 Iter r; lter ::value_type q = xr++; b
14 | F Iter r; const lter ::value_type& q = *r++; b
15 MF Iter r; lter ::value_type& o = xr; f
16 MF Iter r; lter ::value_type 0; *r++ = o; b
17 | B Iter r; lter ::value_type q = x*r--; b
18 | RA Iter r; lter ::value_type q = r[n]; f
19 | RA Iter r; const lter ::value_type& q = r[n]; b
20 | MRA Iter r; lter ::value_type v; r[n] = v; f

whereO=0uTPUT, I=INPUT, F=FORWARD, MF=MUTABLE FORWARD,
B=BIDIRECTIONAL, RA=RANDOMACCESS MRA =MUTABLERANDOMACCESS
Table 2. The requirements that cause forward-incompatibiity
(f) or backward-incompatibility (b). False positives are indi-
cated bystricken text.

deleted but not added, backward-compatibility is brokerorr&
spondingly, if any requirements are added but not deletedidrd-
compatibility is broken.

To calculate the changes in the requirements of STL alguosthve
encode the rewrite rules from the iterator proposal (se&d@es.1)
and apply Algorithm 1Constraint Changeto the type parameters
of the algorithms. The genericity of an algorithm is inceshsf
there are requirements that were deleted but not added ceotther
requirements were added but not deleted.

6 Results

The analysis returns its output in different formats, whieim be
controlled by the user through flags. Three of these outputdits
are related to the issue of compatibility: with increasiregbosity,
compatibility summargummarizes for each concept whether or not
it is compatible compatibility short outputists how many times a
requirement was deleted or added, @odhpatibility incompatible
shows the requirements causing the incompatibility of ai@aar
concept. A fourth output formagienericity changesummarizes for

all type parameters of all algorithms whether or not theiregeity
was increased. The full and unprocessed results of Algarith
can also be turned on. Figure 8 shows examples of the output fo
each kind of format; the complete traces are available onvéie
page accompanying this paper [2]. In this section, we ptesah
interpret the results of the case study.

6.1 Forward- and Backward-Compatibility

Surprisingly to us, the analysis yields that new and oldattens

are not compatible. More specifically, none of the 8 old cptse
and their corresponding new concepts (in the sense of Tgble 1
is backward- or forward-compatible. Even if we ignore inecom
patibilities propagated through the refinement hierarthgre are
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only 3 concepts that introduce no incompatibilities on tteein:
FORWARDITERATOR and BIDIRECTIONALITERATOR (Yet, see the dis-
cussion below), and thd UTABLEBIDIRECTIONALITERATORCONCEPL
that we had to introduce (Section 5.2). These 3 conceptbwviiu-
tomatically both backward-compatible and forward-coriipatif
their refined concepts are “fixed.”

Table 2 details the incompatibilities. Following the refiment hier-
archy, the table lists for each concept exactly the incoibiiies
this concept introduces, i.e., omits those incompatiegithat are
only propagated through refinement. Each row, thus, cooregspto
one incompatibility; the kind of incompatibility is inditad in the
last column. For example, line 1 of the table indicates thatisso-
ciated type Value_type” of the old specification obuTpPuTITERATOR
is missing in the specification of the corresponding new epte
(WRITABLEITERATORANA INCREMENTABLEI TERATOR), Which breaks
backward-compatibility. A further 6 incompatibilities tie OuT-
PUTITERATOR CcONcept are given in lines 2-7. They all propagate to
all refining concepts—that is, all other concepts exceptiireTiT-
ERATOR concept—nbut are not listed again in the table.

It is important to note that some incompatibilities detedby our
analysis are in fact wrong, albeit in a subtle way that shogsra
eral limitation of our approach. We indicate all faults ontpaf
the analysis by stricken text in the last column of Table 2.thes
table shows, there are 6 cases of false positives: 5 due twthe
pound expressions«++” and “xr--” (lines 7,13,14,16, and 17) and
one (line 12) caused by the++” expression. The latter is a false
positive because it is implied by the requiremenmer r; Iter q=
r++;” of the INCREMENTABLEITERATOR CONCept. The former ones,
coming from compound expressions, are due to the granulafrit
our analysis, which looks at expressions in an atomic waytlzere-
fore compares only expressions for equality, not their cositfpns.
Thus, if a compound expression is changed into its constis,iéhe
analysis only recognizes that the compound expressionlésede
and certain new expressions are added, but does not attermet t
termine whether a composition of expressions exist thatjisve
alent to the deleted compound one. Exactly such decompusiti
however, takes place in the iterator proposal: the requargr
r++” of the old proposal, which merges the concerns of traversal
and value access, is decomposed into two requirements,and
“xr” (which are then associated to different concepts). Foresom
concepts, for example theorwaRDITERATOR cOncept, the corre-
sponding new concepts define these 2 new valid expressidhatso
their composition in fact is identical to the original conupal ex-
pression. Not knowing of this identity, however, our ana\ftags
these expressions as backward-incompatible.

For the particular cases of the iterator proposal, it wowddjhite
easy to establish the identity of#+" and its two constituents in
an ad-hoc fashion. For a systematic handling of impliedtities,
however, the analysis would have to be extended by an extra in
ference step. A simpler alternative might seem to avoidefiglse
positives altogether, by breaking composite requiremanis into
their constituents and representing them in the dependgaqsh

as a sequence of non-compound expressions. Yet, such decomp
sition changes the semantics of a requirement since thesggu
execution implies the existence of a temporary, which, xaneple,
cannot be assumed for tiveruT iterator concept.

The incompatibilities in Table 2 can be grouped into 3 catiego
The most interesting ones are the ones that come from thessepa
tion of traversal and access concerns—the main motivatidheo
new proposal. In the old iterator concepts, these concesrs w
combined not justin the concept specification as a wholesdmute-



Full:

Inputlteratorhdel --> constrains
T (of CopyConstructible) --> requires
T (of CopyConstructible) --> requires

I nputlteratorhdel --> constrains
Iter (of Readablelterator) --> requires
Iter (of Readablelterator) --> requires

Compatibility-summary

I nput | teratorMdel NOT COVPATI BLE
Forwar dl t er at or Model NOT COWPATI BLE
Compatibility-incompatible

I nput |t erat or Mbdel

--> Iter (of Inputlterator) --> refines -->
--> T (of Tt; T(t);)

--> T (of const Tu;, T(u);)

--> Iter (of Inputlterator) --> refines -->
--> T (of typenanme T::val ue_type;)
--> T (of T::value_typev; Tp; v ="*p;)

( DELETED)

( ADDED)

Requirement "Tt; T q = t++" added 1 tines, deleted O times. (FORWARD | NCOVPATI BLE)
Requi rement "typename T.:difference_type;" added O tines, deleted 1 times. (BACKWARD | NCOVPATI BLE)

Compatibility-short
Qut put | t er at or Model | ter

Requirement "Tt; Tu, T& q = (t = u);" added 1 tines,
Requirement "T t; const Tv; T&q = (t =v);"

Genericity-change
find_first_of::Forwarditerator2 ---

deleted 1 tines.

added 1 tines, deleted 1 tines.

Genericity not increased.

Figure 8. Examples of five different kinds of output from the analysis

algorithms Del.
reverse_copy, find_end, adjacentfind, search, search.n, 1
rotate_copy, lower_bound, upper_bound, equal_range,
binary_search, min_element, max_element

find_first_of 3,4
copy-backwards 1,0
equal, mismatch, transform 4

Table 3. STL algorithms with increased genericity, groupecby
the number of requirements removed per parameter (second
column); backward-compatibility is provided.

times in one requirement; we have already seen the exampie
Separating these expressions in a traversal-expressioineoone
hand, a value-access expression on the other hand, the emnr-hi
chy cannot always define them so that the original compourd ex

pression remains valid. Lines 2, 6, and 8 in Table 2 show such

incompatibilities.

A second group of incompatibilities are associated typesecally,

the new concepts have fewer associated types than the adsee
lines 1,3-5,9-11). This difference is a result of the praasly re-
quiring the minimal set of associated types from the new epts
For example, while every old concept is required to have &sir
sociated types ( [10, Sec. 24.3.1]), it makes no sense torectine
OuTrPuTITERATORCONCEPt that does not provide a difference opera-
tion to define ‘tifference_type”.

The final kind of incompatibilities results from the interdeom-
patibility with the latest @+ standard. In our study, we used the
more recent draft version of the standard, because it dsrsete
mistakes and resolves some ambiguities in the naturalige
specification of iterators. Compared to the standard, hevyekie
draft also changes the return type of the index operatei”, re-
sulting in the two incompatibilities listed in lines 18 an@.1In
addition, the incompatibility in line 15 is caused by diffet re-
turn type of the dereference operatea™ of the FORWARDITERA-
Tor concept in the draft and in the standard. The last expregsion
line 20, finally, “iter r; Iter ::value_type v; r[n] = v;", iS ot required
by the old concepts, neither in the draft and nor in the acttsai-
dard, but was added in the new proposal to fix a problem in tthe ol
iterator hierarchy (€+ issue 299 [3]).
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6.2 Algorithm Requirements

Refactoring the iterator hierarchy would be an academiccise
if it would not allow rewriting the constraints on STL algdmins
so that they become more generic. In fact, the main goal of the
proposal, as pointed out in the introduction, was to be ablie-t
crease the genericity of STL and other iterator-basedridsaThe
proposal therefore includes a set of rewrite rules that defiim
each STL algorithm how the constraints on its parametersbean
rewritten in the presence of the new concepts. One exampgigobf
rewrite rule we have already seen in Figure 7. There, theryidg
assumption was that rewritingpPuTt asINCREMENTABLE andREAD-
ABLE relaxes the constraints on certain parameters of the gigusi
“equal” and “mismatch”. The backward-incompatibilities, however,
that we reported in the previous section (Table 3), inelytaival-
idate any such assumptions since every backward-incobilfisti
introduces an additional requirement, which the parareaiggi-
nally did not have to meet. For example, changing consgast
suggested in Figure 7 introduces for the algorithragudl” and
“mismatch” the additional requirementiter r; Iter g = r++” (line
12, Table 3), which comes from th@creMENTABLE concept but
was not included in the olthpuTt concept. It follows that it impos-
sible for the analysis to confirm that the genericity of argoaithm
has been increased.

Since it is of interest nevertheless to assess how much tierige
ity could increase we conducted an experiment where we bgpas
all incompatibility issues. Assuming, to that end, thatcalinpati-
bilities hold as intended and defined in Table 1, we did naaliy
apply the rewrite rules that the proposal specifies. Insteedex-
pressed these rewrite rules in terms of new concepts onilyg tise
intended correspondences, we replaced old concepts oigtite r
hand sides of the rewrite rules by their corresponding neveepts;
Figure 9 shows how the rule from Figure 7 is transformed. The
“adjusted” rules represent the change in the generintgndedby
the proposal authors by neutralizing the unwanted efféétecom-
patibilities (the new concepts are compatible with themes)l but
preserving the effects of the original rules on the gengrifialgo-
rithms. We applied CCIA to two versions of the STL specifiocas
that both use the new concept hierarchy but differ in the ttaimts
on algorithm parameters as prescribed by our “adjustedtitew
rules. Although the transformation of the original ruleaghoc,

it allows us to determine which algorithms in STL benefit frtre
new iterator concepts.



READABLE andSINGLEPASS— INCREMENTABLE andREADABLE
equal, mismatch
Figure 9. Modified rewrite rule from Figure 7. The old con-
cept INpPUT is replaced by its corresponding new concepts, see
Table 1.

Table 3 shows for which algorithms their genericity incesapro-
vided the intended compatibility between the new and thetetd
ators holds. The algorithms are grouped by the number ofneequ
ments removed for each of their type parameters. From thd42 S
algorithms that are affected by the changes to the iteratocepts,
17 became more generic.

7 Related Work

Change impact analysis (CIA) describes no particular tegctn
but rather a collection of techniques varying with the pgpof
the analysis. To convey an impression of the potential kheafl
analyses, we refer to the rec&uidelines for the Oversight of Soft-
ware Change Impact Analysis Used to Classify Software Gisng
as Major or Minor by the US Federal Aviation Administration
(FAA) [5]. Somewhat to the extreme, these guidelines sugges
as many as 10 analyses: traceability, memory and timing imarg
data and control flow, input/output, development environtnep-
erational characteristics, certification maintenancd,gantitioning
analysis. Bohner and Arnold [8] provide an overview of thesino
frequently used analyses, traceability and dependency.

In applications to software evolution or early phases ofthfevare
life cycle, CIA essentially requires the identification dassifica-
tion of the computed effects. In applications to later peasfethe
software cycle, the identification of change impact oftemkaahe
first step only, since these effects must be communicatedhtr o
tools or analyses. Our CCIA falls in the first category as iy
ical for CIAs based on specifications or requirements dociisne
(e.g., [7, 15, 30]). In the latter category, in particulag ttumber of
applications to regression testing stands out (e.g., Bl§, 1

The complexity of CIA justifies its use in large software gyss
when changes are difficult to detect since their effects are n
local. Non-locality of impact in imperative programminguadly
comes from side effects. In object-oriented programmin®R®
subclassing, dynamic binding, and polymorphism are ssuofe
non-locality. Dating back at least to Kung et al. [12], mucbrkv
has been done to provide ClAs for OOP at different (e.g., oteth
or class) levels of granularity and for different purposssce our
analysis applies to generic libraries, where the non-igcaf im-
pact is due to the separation of concepts and types, itsstlosen-
terparts are class-level CIAs as for example the one bydRdjli7],
although we do not use his snapshot model for change prapagat
Inspired by the notion of “atomic changes” [19], our repraae
tion of change implies that all changes take place simuitasly.
The dependence graph itself is similar to the program degesel
graphs of Horwitz et al. [9], even though their graphs regnesle-
pendencies between components of an imperative prograte whi
we represent dependencies in library specifications. Offthee
classes of problems they make out as applications of depeade
graphs, i.e., slicing, differencing, and integration, analysis falls
into the class of differencing problems.

CIA is often implemented using program slicing [31]. Sinag o
CCIA concerns conceptual specifications, the classicahglicri-
terion (s,v), wheres is a statement and a variable used s, is
not applicable. Yet, if we allow as a slicing criterion a dangntity

73

or relation and base slicing not on a call graph, but on a gcdph
the conceptual specification, then the two passes of the €@hA
be understood as forward- and backward-slices, respbgtome a
type parameter through the dependence graph.

8 Conclusions and Future Work

Among designers of generic libraries ir€ there is an ongoing
discussion about changing the specification of iteratocepts—
the basis of STL and many other generic libraries. Becausieeof
fundamental role of iterator concepts, the effects of thappsed
changes have to be well-understood. Especially importanthee
compatibility between the old and the new iterator concaptsthe
impact of the new concepts on the genericity of (legacypliies.
Thus far, however, no automated tools were available thaldco
determine the impact of conceptual changes. We have inteatiu
a conceptual change impact analysis (CCIA) and applied tlhé¢o
standardized and the proposed versions of iterator comcdpte
analysis shows that the two iterator hierarchies are nefitinerard-
nor backward-compatible and lists the parts of the spetidicahat
cause incompatibility. Its results can help library desigrto avoid
unintended effects of a change and, in general, providesafoa
assessing its impact.

At present, the CCIA is still a prototype. Our plans for themiedi-
ate future include increasing the accuracy of the analysadoling

a third pass, which detects whether the deletion or addifoa
requirement in fact introduces or eliminates the requirgnsem-
pletelyor just changes its multiplicity (i.e., the number of ways in
which it reaches a type parameter). The additional passedeate
when changes are small, e.g., in incremental concept dawvelot.

It was not necessary in the study of iterator concepts, wttere
changes are so extensive that no relation remains unchanged

In the more distant future, we want to investigate how theegen
icity of the analysis itself can be increased. Its usabiityld be
significantly improved if we could identify (abstract) piitives that
underlie conceptual change impact analysis. Instead dfwaing
the investigation of compatibility, as we currently do, waild or-
ganize these primitives as basic building blocks and allearsito
combine them according to the change impact of their inteet,
we need to gain much more experience with conceptual chamge i
pact, before we can try identifying such primitives.

At the implementation level, we hope to integrate the anghyith

a Ct+ compiler, to automate the process of reading in conceptual
specifications. There is work underway elsewhere to suppeirt
programs that are extended by concepts (e.g., [25, 28])h Sug-
port provided, our users can be spared the tedious and mooe
manual encoding that is currently necessary.
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Abstract

Library development has greatly benefited by the wide adapif
virtual machines like Java and Microsoft .NET. Reflectiorvees
and first class dynamic loading have contributed to thisctrévi-
crosoft introduced the notion of custom annotation, which way
for the programmer to define custom meta-data stored aldlegre
tion meta-data within the executable file. Recently als@ Jeas
introduced an equivalent notion into the virtual machineistom
annotations allow the programmer to give hints to libragésut
his intention without having to introduce semantics degeites
within the program; on the other hand these annotationseme r
at run-time introducing a certain amount of overhead. The @fi
this paper is to investigate the impact of this new featurélwary
design, focusing both on expressivity and performancesssu

1 Introduction

Reflection and dynamic loading are becoming essential eltme
of modern programs. Their usefulness is testified, for exenty
the JDBC architecture that shows how to implement a driveetha
architecture exploiting the Java dynamic loading.

Although reflection can be used to inspect the structure pégy
to access fields and even to invoke methods dynamically,dhe c
cept of tagging has been anticipated as an interestingcapioln.
Consider for instance the Java serialization architecttire pro-
grammer can declare the instances of a serializable clagdysi
by implementing theSerializable interface, which in fact is an
empty interface. Thus two types that differ only for the iemplen-
tation of theSerializable interface are indistinguishable from
the execution standpoint. Besides, the serialization®fristances
of non-serializable types will not be allowed by the seraition
support. Java serialization taught us that the meta-datadstvith
the code can be used for other purposes than mere executiwer. O
programs may rely on the reflective abilities of inspectimg ¢om-
piled types and act differently depending on what they haved.

Although widely used by Java programs, the idea of providixg
plicit meta-data support for annotation has been introduigeMi-
crosoft in the Common Language Runtime (CLR). The virtual ex
ecution environment is part of the CLI standard [MilO3][ECM
More recently also Java introduced annotations as a meaorofeg
custom data inside Java classes [Java]. There are alsospisfio
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add extensible reflection to C++ language [AC02].

Custom annotations have shown to be useful because theiglerov
a channel that library-users and library-developers mayaisom-
municate. A library may require that the user puts annatatian
top of classes and methods in order to instruct the libraryanto
use it.

Unfortunately the availability of this new mechanism irases the
number of possible choices a library developer has for nioglel
the abstractions to be provided to the final user of its liprdihe
choice of using custom annotations instead of more traditipro-
gramming abstractions should be subjected to considaratout
expressiveness and performance issues.

The paper is organized as follows: section 2 introduceousin-
notations; section 3 is devoted to discuss how annotatians ibeen
used so far in real applications; performance consideratoe pre-
sented in section 4; section 5 presents conclusions. As laréina
mark, throughout the rest of this paper we will also refastom
annotationsas custom attributes and we will use the C# notation
inside the examples.

2 Custom Attributes

A custom attributds a piece of information attached by the pro-
grammer to a portion of a program. In the model implemented
both in Java and .NET attributes can be attached only to thlese
ements accessible through the reflection API, such as aissmb
types (delegates, value types, and classes), fields, piepeand
methods; however there has been a proposal of extendingitioe a
tation model to code blocks in [AC02].

In .NET custom attributes are represented by instancesagbet
that inherit from the system clagstribute. Java exposes anno-
tations as instances of an interface.

A custom attribute is defined by specifying a set of valuestaed
type of the attribute; all the values used to create it mustdre-

putable at compile time. The following is an example of aatiohs

in C#:

[MyAnnotation("par", Property="val")]
public class MyClass {..}



The definition of MyAnnotation attribute can be the follogin

class MyAnnotationAttribute : Attribute {

MyAnnotationAttribute (string par) {...}

public string Property;
}

Parameters required to instantiate custom annotatiorst@ned in-
side the binary file, along with the rest of reflection metéagdao
that they can be retrieved at run-time. This datgisredby the
execution environment unless explicitly accessed thrahghre-
flection API. For instance, let m be an instanceMethodInfo

class (a reflective descriptor of a method), in C# we canatrihe
custom attributes associated with the method as follows:

Attribute[] attr = m.GetCustomAttributes(); I

The crucial idea behind the custom annotation consistsitifrgh
up data about the code into the executable and to be avadable
run-time. Custom annotations are interpreted by progrardsase
used for program transformation.

A stereotypical example, from Microsoft .NET, of custonriatites

<?xml version="1.0" encoding="UTF-8"7>

<configuration
xmlns="http://java.sun.com/xml/ns/jax-rpc/ri/config">
<service

name="MyHelloService"
targetNamespace="urn:Foo"
typeNamespace="urn:Foo"
packageName="HWS">
<interface name="HWS.HelloWSIF"/>
</service>
</configuration>

Despite its verbosity, to annotate théS.HelloWSIF interface as
a web service (i.e., all the methods of the interface shoalddn-
sidered operations of the service) is the only purpose dfildne

3 Using annotations

Libraries were originally conceived as collections of coomuse
routines that programmers can import within their programes-
day libraries have become tangled set of programming at&ns
(usually in the form of classes) modeling some applicatiomain.

usage is the support for implementing web services by mefins o 10 USe a library it is required to understand its lingo and hiogv

custom attributes.WebMethod attribute is used to label methods

that should be exposed as web services. A minimal web service

written in C# that computes the sum of two integers is theofoll
ing:

public class HelloWorldWS {
[WebMethod]

public int add(int i, int j) {return i+j;}
+

Once compiled, thBelloWor1dWws class does not provide any web
services interface. A different program - actually partaf Internet
Information Server - is responsible for looking up reflestinfor-
mation within assemblies and generating a SOAP/WSDL iaterf
to the method add over HTTP.

The essence of annotations is that information is storedtieg
with the code so that some other meta-program will need drdy t
executable file to access the information. Although this segm
to be a little change with respect to configuration files satppith
the executable program, it makes all the difference. Withogar
tions the programmer can decorate the program, withounbaai
define bindings between types and custom information. Maeo
configuration files are separated from the executable, igatdi a
weaker link between the code and its configuration. In thé\was
have dearly paid the separation of the meta-data from tre dat
it is still withessed by the COM [Rog97] architecture in Wik,
where meta-data are stored inside the disliked systentmggis

To better appreciate the effectiveness of custom annatatier-
sus the use of external configuration files it is worth to byielé-
scribe the Java Web Service development pack [Javb], diyren
based on Java 1.4 (the Java version prior to custom annwatio
With this library the programmer should define several XMinco
figuration files to control the module responsible for getiega
SOAP/WSDL. For instance the interface of the Web servicesis d
fined with an XML document similar to the following:
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domain values and operations fit together.

Often libraries are used as a way to extend the programmmg la
guage with new features (this practice originated with Crneteyen
the basic I/O was provided in the form of a library); in a sethsy
contribute to define a language within the language, dediéprea
given application domain.

In this section we discuss possible uses of custom annogat®m
support the definition of library interfaces.

3.1 General considerations

Custom attributes allow tagging programming elements;, thiéer
from inheritance in two ways:

1. annotations are parametric, inheritance no (unless $omme
of generics is taken into account, and even then it is passibl
only if specialization is available);

2. unlike inheritance that imposes a small amount, though no
null, of overhead at run-time, annotations are passivessnle
explicitly read

Another important aspect of annotations is that they ateoganal
to other relations; therefore they are suitable for intdg new
relations among types of a programming language. Attrate
user-defined, thus there is not a predefined set of them, dmcheyl
may introduce as many of them as required.

In the area of domain specific languages custom attribueease-
ful to define the traits of types [CEOQQ]. Traits are used tdficnme
a generic library so that the amount of information is enotmh
specialize it to some particular application. In the cohtexgen-
erative programming traits are usually processed at centipile,
along with program specialization. At the moment customosan
tions are processed at run-time, introducing possiblehmaats that
could be in principle avoided. We will discuss further trgsue in
the next section.



Custom annotation cannot refer directly objects that wéllavail-
able at run-time. This is required because they should beepsed
at compile time, in a different context of the compiler.

3.2 Serialization

Serialization is the process of writing a structured objec serial
stream. As we pointed out in the introduction serializatioiyi-
nated the idea of using interfaces for tagging classes i Jav

With custom attributes it is possible to go further and contine
whole process of serialization of instances of a given class us
consider the following example:

[Xm1Root ("NewGroupName"), XmlType ("NewTypeName")]
public class Group{
[XmlArrayItem ("MemberName")]

public Employee[] Employees;
}

In this case the class Group has been annotated to indicatésho
instances should be serialized. The root element will beetbhas
indicated, the same will happen for XML type name that will be
used within the associated XSD schema. More interestinges t
annotation over the Employees field, which indicates thah@
serialized array only thBemberName fields ofEmployee instances
must be serialized. Thus in the serialized structure we ovily
partially serialize the associated employees.

3.3 Indigo and Web Services

We already discussed in the previous section how attrilxgede
used for defining Web services. A class defines a Web service, a
annotated methods indicate the methods that should be exXaes
operations.

The upcoming library codenamed Indigo [Win] (now dubbed as
Windows Communication Framework) for supporting disttéal
computations based on web services standards heavily pely u
custom annotations. The library revolves around the naifatata
contractandservice contractAs we might guess from the names,
the first refer to the structure of the data as it is seen frotside of

the application, the second to the definition of publisheerapons.

Here is a simple example of data contract:

[DataContract]
public class Person {
[DataMember]
public string fullName;
[DataMember]
private int age;
private string mailingAddress;
private string telephoneNumberValue;
[DataMember]
public string TelephoneNumber {
get { return telephoneNumberValue; }
set { telephoneNumberValue = value; }
}
}

The traditional approach to marshalling in frameworks like
CORBA [COR], Java RMI [Gro01], and .NET remoting [MNWO02],
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is to define a type so that its serialized form coincides withrhes-
sage to be sent on the network in inter-process communitsatio
this way we let the run-time take care for us of the commuiooat

Using custom attributes Indigo decouples the data streidram
its serialized form required for network communicationghisTis
possible because, as we already said, custom attributeseslefn
orthogonal dimension to that of the type system.

In the example above only the members lab&@etlaMember will
be serialized in communications (even if they are privasidia the
process!). The same approach is used for defining data ctsitra

[ServiceContract]
public interface IOne {
[OperationContract (IsOneWay=true) ]

void AQ);
¥

Service contract provide information about how methodsikhbe
exposed to network users of the service. Annotations allewou
provide additional information on the behavior of the parkar op-
eration, in this case the fact that the operation will notimetany
value so that the client can close the connection as soorsagpm

A similar approach has been taken by Robotics4.NET [CCEPO5]
a software library supporting the development of contrdtveare
for robotics systems. In this case annotations are usedfioede
incoming and outcoming messages from a sort of agent, aalted
let. Custom annotations are used by the framework to imptéme
the communication infrastructure among the roblets anddhérol
software of the system. The following is an example of sudieto

namespace HeartBeat {
public class Beat : RobletMessage {
public long tick = DateTime.Now.Ticks;
}

[OutputMessage (typeof (Beat))]
public class HeartBeatRoblet : Roblet {
public HeartBeatRoblet() : base("HB") {}

protected override void Run() {
SendState (new Beat());

The SendState method is responsible for taking care of message
dispatching, and it its behavior is controlled by the custnmota-
tions indicating friendship among agents, input and outpessage
types.

3.4 Reational Interfaceto Databases

In[ACO02] it is discussed how to extend C++ with reflection gap
by means of template meta-programming techniques. Thepeap
reflection system provides support for custom meta-data.

In the paper it is discussed how a library for building seacgines
can benefit from the declarative power of custom attributeshis
case attributes drive storage information of the objects:



class DocInfo {
char const* name;
char const* title;
int date;

META (DocInfo,
(FIELD (name, (MaxLength(256),
IndexType (Index: :primary))),
FIELD(title, MaxLength(2048)),
FIELD (date, IndexType (Index::key)))

In a way similar to C# attributes are objects stored witharfeta-
class. Inthis example we udexLength andIndexType attributes
to control how the search engine library must store and irdex
jects on the secondary storage.

3.5 CodeAnnotations

Assuming custom annotations capable of annotating partafn
code as it is done in [a]C# [CCCO05], an extension to the C# lan-
guage, we can use them for more finer grain tasks.

Using this kind of annotations it is possible to annotate @eowith
hints on about how to produce the concurrent version of it:

public void m() {
[Parallel ("Begin of a parallel block")] {
Console.WriteLine ("Main thread code");
[Process ("First process")]{ /* Computation here/ }
[Process]{ /* Computation here/ }
¥
Console.WriteLine ("Here is sequential");

}

In this case we rely on annotations to m@drallel a block of
code. Inside we define code blocks annotateBragsess that can
run in parallel.

3.6 Attribute Usage

Microsoft .NET defines a set of “meta-attributes” that carubed
as annotation when defining an attribute class. These diomaa
are used to possibly constraint the attribute usage. Thenfivig
example defines an attribute that can be used only once apdwonl
classes:

[AttributeUsage (AttributeTargets.Class,
AllowMultiple=false)]

class ClassTgtAttribute : Attribute {}

In a sense, the ability of specifying that an attribute candsl only
on classes or methods, if it is inherited or not, provides amador
specifying a sort of a customizable syntax for custom atteb.

3.7 Designer Environments

Microsoft Visual Studio [Mic] designer is capable of loadiarbi-
trary components during the design process of user inesfast
design time components are configured by specifying a sufset
properties that the component should have at run-time.
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Microsoft .NET controls can indicate to the designer whicber-
ties can be configured at design time by means of customutttsb
Default values of design-time properties are also spedifiezligh
custom attributes.

The designer is able to display a preview of the componentewhi
designing an interface. A custom attribute specifies whiabscis
responsible for generating the preview of a component. Te d
signer, however, should inherit from a specific class in otdéoe
eligible for its role.

Java designer also relies on reflection information in otddoad
components into the designer. However, in this case a nacoing
vention is used to determine properties so be shown inseldeh
signer. The naming conventions used by Java are defined by the
Java Beans specifications.

3.8 Final Considerations

In this section we presented several applications of cusiom
tributes. We believe that many others are possible, makitensi-
ble meta-data an important tool in the library-designelttox.

In particular we believe that the declarative aspect of fig@ach
allow library developers defining interfaces both operaioand
declarative.

Custom attributes have almost no drawbacks: they allow idefin
arbitrary relations among data types, are distributed exidcuta-
bles, and always accessible through the reflection API. Kewe
there is a noticeable exception: there is the risk of a ptessier-
head, due to the facet that meta-data interpretation is qfee-
formed at run-time. In the next section we will discuss thEpect
of the problem.

4 About performance

Performance is always important, and custom attributesldhmt
impose a significant overhead over a computation in ordereto b
really used.

At a first glance it might be evident that meta-data can béeretd
only at run-time through reflection. This implies that, ifrédutes
are used to specify traits of a library, we must postpone ctaiap
tions that could be done at compile time, at run-time.

This is true for the examples shown in the previous secticow-H
ever it is not true in general: meta-programs can be run befar
so-call “run-time”, though they run after the compiler.dtthe case
of several tools that manipulates binaries available fervérious
virtual machines.

Nevertheless, when we are interested in using custom wtsiuli-
rectly at run-time, we must consider that the time spentdading
meta-data is not zero. It is however possible to drown ther-ov
head into the overall computations costs: for instanceMilceosoft
XML serializer, for instance, dynamically generates asfas each
type it serializes, and annotations are read during thigiggion
process. After this generation phase serialization takepvith-
out any more accesses to custom meta-data.



5 Conclusions

In this paper we have discussed how custom annotations rfeay af
the design of libraries. The main impact of the mechanisnt is a
the level of library interface; however it also influences thternal
design of the library.

Custom annotations provide a mean for library users to detteir
intentions, and for library developers to better adapt féedint
uses of the library. If used in their simplest form annotagicequire

to be processed at run-time. The overhead imposed for aegess
them is in general not significant, though it is possible torgkof

it by executing a meta-program responsible for processimgpta-
tions before that the program is executed.

We believe that custom annotations will play a significané iia
the design of libraries in the next years, and they will beeafith
other programming systems that still lacks of this kind gifsart.
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ABSTRACT

Inner classes have been part of the Java specification since ver-
sion 1.1, and are an integra part of the Beta language. In Java
they have primarily been used in connection with event handling
in the user interface libraries. This paper investigates inner classes
as the cornerstone in the architecture for the layout part of a GUI
framework, and how the two languages support this architecture.
The difference in support in the two languages is shown to have
clear impact on the usability of the framework for application
programmers. While Java has come a long way, it turns out that
three obstacles need to be removed to fully support the architec-
ture. Of these, it should be straight forward to address two of
them in Java. The third lies in the realm of aspect oriented pro-
gramming. The proposed architecture is itself interesting, as it
provides an insight into larger-scale use of inner classes, and pro-
vides a compiler supported idiom for the implementation of the
composite design pattern.

1. BACKGROUND

In object oriented programming languages which support inner
classes, eg. Smula [Dahl et al., 1968], Beta [Madsen et al.,
1993] and Java [Gosling et al., 2005], we have come across an
interesting implementation idiom which relates to the composite
pattern [Gamma et. al. 1995]. The design is that the lexical nest-
ing mirrors the composition of the objects. A simple example in
Javais:

class Menu{
private String name;
private List<ltem> items = new ArrayList<ltem>();
public Menu(String name){
this.name = name;

}

protected abstract class Item{
private String name;
public ltem(String name){
this.name = name;
items.add(this);

abstract void action();

The important part is that the class Menu has a list of Items, and each
Item adds itself to the menu when created. The usage of generic collec-
tions does not play any role in the discussion. The class Item is declared
protected, so it can only be used in subclasses of Menu.

The declaration of enablesthe following client code:

Menu editMenu = new Menu(“Edit"){
Item copy = new Item(“Copy”){ void action(){...} };
Item cut = new Item(“Cut”) { void action(){...} };
Item paste = new Item(*Paste”) { void action(){...} };

Menu fileMenu = new Menu(“File"){
Item quit = new Item(“Quit") { void action(){...} };

The implementation uses anonymous inner classes as a concise imple-
mentation of the singleton. In addition, lexical scoping avoids parsing a
menu as parameter to items when they are created.

The idiom enables a somewhat declarative style, where the physical
structure of the menu is mirrored in the program layout itself. Other ex-
amples of this structure are the relationship between rule-set and indi-
vidual rules, where the rules can be defined inside their rule-set; or the
hierarchical structuring of a GUI, to which we will return. In Beta, we
have also applied the idiom in the area of process composition
[Dsterbye & Kreutzer, 1999].

In general, there are a number of qualities which one would like a
framework to have:

e |t should be simple to use for the application programmer

e  Misuse of its constructs should be captured at compile time
e |tsapplication should be concise

e  Theframework should be extensible

e  The underlying implementation should perform adequately —
that is, should not constitute a bottleneck in the application

Also, it isimportant to realize that a framework is a generalization over
a set of applications. There are therefore (interesting) applications that
are covered and other that are not covered by the framework.

Compared to the above qualities, the simple menu illustrates some im-
portant points:

e Simplicity. The application programmer need not have an ex-
plicit set of statements which associates items to menus. The
menu structure is manifest in the program structure.

e  Compile-time checks. Attempting to use Items outside the
scope of a Menu will not work, class Item has been declared
protected, and can therefore only be seen in subclasses of
Menu. The compiler checks this (but will give un-informing
error-messages in case of violations).



e Conciseness. There is not much extra information ex-
cept the definition of the hierarchical structure between
Menu and Item. There is some redundancy (Item and
item name repeated twice), which we will return to.

e Lack of flexibility. These qualities have been obtained
a the cost of not being able to dynamically change
which menu a given item belongs to.

In the remainder of this paper this idiom will be further elabo-
rated. The next section introduces the framework we have devel-
oped to investigate the idea. The description highlights the inner
classidiom, and the problems we have encountered in implement-
ing the idiom in Java. Then we contrast some of the problems en-
countered in the Java solutions with similar (but less problematic)
solutionsin Beta. We end with a summary of our findings.

2. HHERARCHICAL GUI LIBRARY (HGL)

Before examining the differences between the languages, a
slightly more complex example is needed. As part of his master's
thesis, Thomas Quistgaard [Quistgaard, 2005] designed and im-
plemented a hierarchical user interface framework. The goal was
to apply the above inner class idiom for a full scale framework to
achieve asimpler to use GUI framework than say Swing, which is
notorious for its complexity.

The design is based on afew overall guiding principles:

a) The program structure should mirror the hierarchical
structure of the GUI.

b) The components are added to their enclosing container
in the order they are declared (Using the same idiom as
with the menu).

c) The physical layout is declared using annotation types,
to provide a clear separation between hierarchical struc-
ture and physical layout, and to provide a path for later
tool manipulation of physical layout.

To explain the design, a simple example will be used.

£ Person Manager

[ | | Name: | |

Thomas Quistgaard
Christina Olsen
Runi Thomsen

Address: | |

Phone: | |

| Remowve | Add |

The above Frame (top level window) has to its left atext field in
which one can enter a search string. All persons that contain the
string in their name are shown in the list below. Selecting a per-
son brings up the underlying datain the right part for examination
or modification. The above GUI is defined in HGL as shown be-
low.

This example illustrates the three design principles. Every graphi-
cal object which appears inside the frame is declared as member
fields of the anonymous personManager Frame. Anonymous inner
classes give a syntactic structure which enables the hierarchical

structure to follow the program structure. Inside the frame, a panel is
declared, inside which atext field and alist are declared.

The components are added in the order they are declared. Inside list-
panel, a TextField, and then a List are declared. These are added to the
panel in the order of declaration.

Frame personManager = new Frame("Person Manager") {

@Vertical
Panel listpanel = new Panel() {
@Width(150)
TextField searchtextfield = new TextField();
@Width(150) @Height(300)
List list = new List(); // GUI list, not a collection library List

)2

@Vertical @Padding(0)
Panel infopanel = new Panel() {

@Horizontal
Panel namepanel = new Panel() {
@Width(100)
Label namelabel = new Label("Name:");
@Width(200)
TextField nametextfield = new TextField();
I3
@Horizontal
Panel addresspanel = new Panel() {
@Width(100)
Label addresslabel = new Label("Address:");
@Width(200)
TextField addresstextfield = new TextField();
I3

@Horizontal @Hlock(false)
Panel phonepanel = new Panel() {
@Width(100)
Label phonelabel = new Label("Phone:");
@Width(200)
TextField phonetextfield = new TextField();
3

@Horizontal @Hlock(false)

Panel addpanel = new Panel() {
Button removebutton = new Button("Remove");
Button addbutton = new Button("Add");

%
il end infoPanel
}; I end personManager

Frames and Panels are containers that contain other components, includ-
ing other Panels. Layout is defined using annotations. Annotations are
user defined metadata. Syntactically, annotations are located as modifi-
ers, in front of the element they annotate. Annotations are accessed pro-
grammatically through reflection. @Horizontal is a user defined annota-
tion, which is used to specify that the layout in the panel should be hori-
zontal instead of the default vertical. Annotations can include simple
values as parameter. @Padding indicates the space between a component
and the previous component in the same container (or the border if it is
the first). Hlock and Vlock indicate resizing behaviour.

2.1. Addressing components

The above code does not specify behaviour, only layout. There are two
kinds of behaviour which is interesting in connection with GUI frame-
works: tying the GUI to the application data and business logic, and



(our focus) ensuring graphical consistency. If we select “ Christina
Olsen” and modify her name, that hame change ought to be re-
flected not only in the application data, but also in the list. Stan-
dard Swing list listeners raise an event if an element is being
added or deleted from a list, but not if an element is changed. A
direct approach would be to let the textChanged event from the
nametextfield directly change the list:

TextField nametextfield = new TextField(){
void onChange(TextChangeEvent e){
listpanel.list.changeSelected(this.getText());
}

But this does not work because listpanel is of type Panel, and Panel
does not have a field named list, though the concrete object
listpanel refers to does indeed have this field. To get around this,
we implemented a method get (using reflection), which alow us
to write the above code as:

TextField nametextfield = new TextField(){
void onChange(TextChangeEvent e){
((List)get(“listpanel.list")).changeSelected(this.getText());

}
Unfortunately, we can no longer check at compile-time that the
path exist and is spelled correctly.

2.2. Compile-time checking

The hierarchical definition of the components plays an important
role in making certain that the compiler can catch as many mis-
takes as possible.

At the outset, the design looks like a composite pattern, with the
components as leafs, and panel and frame as composites. In
Swing, aFrameis atop-level window, and as such:

e  No component exists outside a frame

e No frame can be put inside a frame (a frame is not a
component)

The standard composite pattern does not treat the issue of a dedi-
cated root composite. In particular, no compile time checks are
carried out.

To provide a compile time checkable version of the rooted com-
posite pattern, we can again use inner classes as a key:

interface Component{...}
interface Container extends Component{
List<Component> getComponents();
void addComponent(Component c);
}
class Containerlmplementation {
private List<Component> components;
public Component getComponents(){ return components; }
public void addComponent(Component c){ components.add(c);}
protected class TextField implements Component{...}
protected class Label implements Component{... }
protected class Panel extends Containerlmplementation
implements Container{... }
}

public class Frame extends Containerimplementation{

}

The interface for components has a speciaized interface which
represents containers. The container interface specifies that it

consist of components, whereby we obtain the usual recursive compos-

ite pattern.
«nterface» |
Component

«interface»
Container

Container
Implementation

Panel

Component
tation

‘ TextField ‘ ‘ Label ‘

Frame

The class Containerlmplementation contains the necessary infrastructure
to implement the Container interface, but does not declare that it does so
(no implements clause). Containerlmplementation has two subclasses —
Panel and Frame. Frame is a public class, and can be used as expected.
However, it does not implement the Container interface; hence Frames
are not components and cannot be contained in a container. Panel on the
other hand declares that it implement the Container interface. The meth-
ods to do so are inherited from ContainerImplementation.

Leaves (e.g. TextField and Label) and Panel are protected inner classes of
Containerlmplementation, and can therefore only be used in subclasses of
Containerimplementation, whose only public subclass is Frame. Within a
concrete Frame, e.g. the anonymous class assigned to personManager,
one has access to the protected inner classes TextField, Label and Panel.

The design does not change the way how the application programmer
uses the framework. And it achieves the two compile-time checks we
wanted:

e Itisnot possible to add a frame inside a frame, as a Frame is
not a component.

e Itisnot possibleto use any components outside aframe, since
they are protected inner classes of Containerlmplementation (al-
lowing components to be used both within Frame and Panel).

We find thisidiom for implementation of the composite design pattern a
contribution in its own right. It gives a solution to the notion of a special
root composite, and it can enforce this design at compile-time.

3. ISBETA BETTER?

The original idea for the HGL framework originates in Beta [Lidskjalv,
2002]. In [Quistgaard, 2005] the design is expanded, in particular by
adding declarative layout, and accommodating the design to fit Java. In
this section we will examine a few issues where Beta and Java differ
and how thisimpact the details of the library.

3.1. Variable declaration syntax

A mundane difference between Java and Beta relates to how variables
are defined. Java declares variables as “Type varName”, whereas Beta
does “varName: Type”.

In Beta, the declaration of editMenu would look like (Though we use
{...} instead of Beta's (#...#) ):



editMenu: @Menu{
copy :@Item{ action{...} };
cut:@ltem{ action{...} };
paste:@Item{ action{...} };

The Beta syntax is more concise, as we avoid stating ltem twice,
both as type name and after new. Furthermore, we do not need to
pass the name of the menu item as parameter, as we are able to
pick out the name through reflection.

A more important consequence of the different way of declaring
the variables surfaces in connection with the addressing of com-
ponents. In Java, it was necessary to use reflection in addressing
components, although we were able to hide this in the get method.
In Beta, the type of the corresponding listPanel variable is the ac-
tual type which does have alist field. Hence, in Beta we are able
to avoid reflection in connection with field addressing.

3.2. Reflection

Reflection is typically avoided because of bad performance and
because it postpones checks to runtime. In the concrete design of
HGL, event handling was not done as described earlier. Instead a
mapping between events and handler methods were established
programmatically as:

((List)get(‘listPanel.list”).onSelect(“listElementSelected”);
A series of such statements are executed at initialization. The get
method returns a list, and this list is told what method to execute
when an element is selected.

Because of reflection, the spelling error “listPanel.list” (should be
“listpanel.list”) is first caught at runtime. However, the mistake is
caught at program initialization. Thus, running the program just
once will reveal the error. Efficient run-time structures are con-
structed during initialization, so no execution time is lost in prac-
tical usage.

3.3. Annotation checks at compiletime

It would have been compelling to use the new annotation process-
ing tool [APT 5.0] to check that annotations were used correctly,
for instance that the Vertical annotation is only associated with
Panels. However, neither Java reflection nor APT alows us to ac-
cess inner classes; hence we cannot traverse structures of anony-
mous inner classes. So while we basically have all the machinery
in place, a design choice in Javaand APT prevents us from doing
compile-time checks in connection with applications of our
framework.

3.4. Object initialization

Java has two ways to provide information when an object is cre-
ated. One can pass parameters to its constructor, and sometimes
one can attach annotations to its declaration. In Beta one cannot
do either one.

So, the best approximation one can do for the layout information
in Betais something like the following

listPanel:@Panel{ Layout::Horizontal; Padding::{do 0->padding};

}
This syntax specifies that listPanel is a constant which refers to an
object which is a subtype of Panel, where the virtual type Loca-
tion is bound to Horizontal. This corresponds roughly to giving

Horizontal as a type parameter. The method Padding is specialized to
return the value 0.

There are several drawbacks compared to the annotation approach
e Annotations are well suited for tool manipulation.

e  The specification of concrete values, like O padding becomes
quite clumsy.

But there are a number of drawbacks associated with the annotation ap-
proach we have used as well.

1) One cannot associate annotations with anonymous inner
classes. Hence we have been forced to annotate the fields in-
stead.

2)  Annotations need to be manipulated through reflection, which
implies poor performance. In our case, however, it is only
done when the Frame is initialized, not when the GUI is used.

3.5. Framewor k extension

The complex design makes it hard to add new component types to the
library, as we effectively need to add new definitions inside a package
protected class. The Beta compiler supports a Fragment system. The
fragment system is a way to declare insertion points in classes, and en-
ables libraries of code which, at compile-time, is weaved into these in-
sertion points. A problem in HGL is that one cannot add new protected
component types to the Containerlmplementation class. A Java version of
Beta's fragment system would alow us to write the Container-
Implementation class as:

class Containerlmplementation {
private List<Component> components;

protected class Panel extends Containerimplementation implements Container{
«SLOT ExtraComponents: Declarations»

A component, e.g. GanttChart, can be written, specifying that is intended
to be inserted at the ExtraComponents slot. GanttChart is compiled as if it
were lexically located at that slot, with access to all the same lexical in-
formation as the standard components.

To use GanttChart, in your application, you declare it in an insert clause.
Rather than making GantChard available in the global name space, insert
makes GandChart available as if it were inserted into the slot. Hence,
GanttChart cannot be used outside of Frames. On the other hand, it is
readily available to be used as any other components.

It is highly unlikely that such a mechanism should be included in Java
A similar effect can be obtained using aspect oriented programming.
The idea is to use insertion to place the GanttChart into the
Containerlmplementation as:

aspect MyComponentLibrary {
protected class Containerimplementation.GanttChart {...}
}

At present, however, the most widely used aspect compiler for Java,
Aspectd [Aspect, 5.0] does not support insertion of inner classes, and
aspect oriented programming tends to focus on other issues than inser-
tion. The difference between the slot approach and aspects is discussed
in [Ernst, 2000]. For our needs there is no fundamental difference.

While C# does not support inner classes, its notion of partial classes is
also a solution. If Containerimplementation were partial, it could extended
it with new components. Partial inner classes have to be worked out in
practice. The slots in Beta can only be used for adding new classes and



methods, not new fields, as that would change the size of objects,
which would prevent separate compilation.

4. SUMMARY

With some tradeoffs, we have been able to implement HGL in
Java. Its design, however, is cleaner in Beta. In particular we have
encountered three major problemsin Java:

First, the problem with the type of variables and anonymous inner
classes in Java is a hindrance for our design of HGL. One solu-
tion is to adopt the val type from ML, to state that the type of a
variable should be deduced by type inference. Hence, out listpanel
should be defined as:

final val listpanel = new Panel(){

I:iét list = new List();
}
This way the type of listpanel could be the anonymous subclass of
Panel which has the field list, so it can be compile-time checked
that listpanel.list is indeed alegal object path.

While it is unknown if such aval construct will make it to Java, a
variation which can solve the problem will be available in next
version of Visual Basic.

Second, the standard java annotation processing tool allows us to
write our own compile-time modules. This facility is intended for
writing code-generators in connection with J2EE. However, it is
tempting to view it as general compiler extension mechanisms,
which alow us to write custom compile-time checks for the usage
of libraries and frameworks. In its present state, however, we can-
not use it for HGL. Nevertheless, a possible example might be the
unit testing framework JUnit [JUnit]. JUnit assumes certain nam-
ing conventions, which are checkable using reflection, and can
also be checked at compile time. We have not investigated this
further. But in our case, neither reflection nor APT allows us to
examine the whole program; in particular anonymous inner
classes can not be traversed.

Thirdly, to make the inner class approach presented here feasible,
it is necessary to solve the problem of adding inner classes to an
existing class. Java needs to be extended with something similar
to partial classes, or AspectJ needs to be able to handle introduc-
tions of inner classes. The notion of MixIn Layers [Smaragdakis
& Batory, 1998] provides ancther view on how the existing
framework can be refined into a new framework with additional
components. Their solution provides the necessary infrastructure
we ask for, but from our experience with HGL we do not neces-
sarily need all the capabilities of MixIn Layers.

Scala [Odersky et al., 2005] provides the key mechanisms needed
to implement the inner class idiom as well, in particular object
definitions and anonymous inner classes. However, it seems that
Scala has the same problem as Java when it comes to extending
the framework, and it is not clear what mechanisms can be used
to separate logical and physical layout.

Compared to [Hedin & Knudsen, 1999] we are applying some of
the mechanisms from Beta that they describe as providing benefit
for framework design. In relation to their work, the contribution
in this paper has been to apply those guidelinesin the context of a
Java based framework, and to report where Java fails in achieving
the goals. However, an important issue for framework design not
mentioned in [Hedin & Knudsen, 1999] is object initialization.

Here Javais superior to Beta, providing both field initializers and anno-
tations.

Of the major object oriented languages, it is only Java that supports in-
ner classes. C# and C++ share a design, in which a class can be defined
inside an other class, but the inner class will not have instances of the
outer class as lexical scope for its objects, hence not even the simple
Menu-Item example will work. Eiffel, Smalltalk and many other lan-
guages do not even allow the simple nesting of C++ and C#.
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ABSTRACT

In large-scale framework-based applications, every piece of
information has a complex story to tell about its journey. As it
makes its way through a tangle of reusable frameworks, it may be
transformed from a string, to an Integer, to an integer, and finally
to a date. Over the past several years, our research group has
analyzed dozens of industrial, framework-based applications.
Often, simple functionality requires a seemingly excessive amount
of runtime activity and complexity. We have found it increasingly
difficult to understand behavior, weigh design tradeoffs, and
assess if and how performance problems can be fixed.

Much of this activity revolves around the transformation of
information from one form to another. In this paper we present an
approach to understanding runtime behavior that models activity
as the flow of logical content through a sequence of
transformations. We show how to manually group and filter
activity into a hierarchy of data flow diagrams, to make an
otherwise overwhelming amount of information about a run
manageable. We give a detailed example that illustrates the
approach, and also demonstrates the complexities typically found
in this class of application. We show how structuring behavior
according to transformations allows us to introduce new metrics
of cost and complexity derived from the topology of the diagrams.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics — complexity measures

General Terms
Measurement, Performance, Design

Keywords
Dynamic  analysis, program understanding,
assessment, performance analysis, design recovery

complexity

1. INTRODUCTION

Large-scale applications are being built from increasingly many
reusable frameworks, such as web application servers (that use
SOAP [5], EJB, JSP), portal servers, client platforms (Eclipse),
and industry-specific frameworks. Over the past several years, our
research group has analyzed the performance of dozens of
industrial framework-based applications. In every application we
looked at, an enormous amount of activity was executed to
accomplish simple tasks. This was the case, even after some
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tuning effort has been applied. For example, a stock brokerage
benchmark [10] executes 268 method calls and creates 70 new
objects just to move a single date field from SOAP to Java.
Beyond identifying bottlenecks, this paper presents an approach
to making visible the nature of runtime complexity and
inefficiency in these applications.

In our experience, inefficiencies are not typically manifested in a
few hot methods. They are mostly due to a constellation of
transformations. Each transformation takes data produced in one
framework and makes it suitable for another. Problems are less
likely to be caused by poor algorithm choices, than by the
combined design and implementation choices made in disparate
frameworks. In a web-based server application, for example, the
data arrives in one format, is transformed into a Java business
object, and is sent to a browser or another system — e.g. from
SOAP, to an EJB, and finally to XML. Surprisingly, inside each
transformation are often many smaller transformations; inside
these are often yet more transformations, each the result of lower-
level framework coupling. In addition, many steps are often
required to facilitate these transformations. For example, a chain
of lookups may be needed to find the proper SOAP deserializer.
In our benchmark example, moving that date from SOAP to Java
took a total of 58 transformations.

How do we know if 58 transformations is excessive for this
operation? And if so, what could possibly require so many?
Traditional performance tools model runtime behavior in terms of
implementation artifacts, such as methods, packages, and call
paths [1,2,3,7,8,18]. Transformations, however, are implemented
as sequences of method calls, spanning multiple frameworks. In
this paper, we present an approach for understanding and
quantifying behavior in terms of transformations. We believe this
model enables:

m Evaluation of an implementation to understand the nature of
its complexity and costs, and assess whether they are
excessive for what was accomplished.

m Comparison of implementations that accomplish similar
functionality, but use different frameworks or physical data
models.

We model the behavior of a run by structuring it as the flow of
data through transformations. We believe that structuring in terms
that are abstracted from the specifics of any framework will enable
new ways of evaluation and comparison. We briefly show how
new cost and complexity measures can be derived from this



model. Generating a model and computing metrics are currently
manual processes; parts are amenable to automation in the future.
We now describe the approach in more detail.

Structuring Behavior: There often are multiple physical
representations of the same logical content. For example, the
same date may be represented as bytes within a SOAP message,
and later as a Java Date object. Our approach structures runtime
activity as data flow of logical content, as illustrated in Figure 1.
We show the data flow as a hierarchy of data flow diagrams [6,9].
Each edge represents the flow of a physical representation of
some logical content. Each node represents a transformation — a
change in logical content or physical representation of its inputs.

Many types of processing can be viewed as transformations. For
example, a transformation may be a physical change only, like
converting information from bytes to characters or copying it from
one location to another; it may be a lookup of associated
information, such as finding a quote for a stock holding; or it may
be implementing business logic, such as adding a commission to a
stock sale record.

It is infeasible to have a dataflow diagram show an entire run. We
introduce the concept of an analysis scenario that filters the
analysis to show just the production of some specified
information. We show how to group the activity and data of an
analysis scenario into a hierarchy of dataflow diagrams.

Transformation-based Complexity and Cost Measures: We
use the number of transformations as an indicator of the
magnitude of complexity. We introduce metrics that aggregate
based on the topology of the diagrams. For example, 58
transformations to convert one field seems excessive. Knowing
that 36 of these occurred at a diagram depth of three indicates that
the complexity was due to design decisions were made far from
the application code.

We can also aggregate traditional resource costs, such as the
number of instructions executed or objects created, by
transformation. Aggregating in this new way, as opposed to by
method, package, or call path, gives more appropriate metrics of
cost for framework-based applications. Throughout the paper we
give examples showing the benefits of reporting costs by
transformation.

In Section 2 we describe the structuring approach, following the
data flow of logical content through transformations. We also
discuss strategies for grouping and filtering activity, and give a
brief example. In Section 3 we give an in-depth example, that
follows our single date field from a SOAP response into a Java
business object — a seemingly simple operation with surprisingly
complex behavior. In addition to illustrating the approach, this
example illustrates the nature and magnitude of the complexities
found in large-scale framework-based applications. Structuring by
logical data flow also enables new quantitative analyses that can
shed light on the costs and complexity of an implementation. In
Section 4 we show some of these metrics.

2. STRUCTURING APPROACH

We model runtime behavior using data flow. Using the raw data
flow information would give too much, and too low a level of
information to make sense of. In this section we present our
approach to filtering and grouping activity into a hierarchy of data
flow diagrams.
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Figure 1: A dataflow diagram of how the Trade benchmark
transforms a date, from a SOAP message to a Java object.

Figure 1 shows a dataflow diagram from a configuration of the
Trade 6 benchmark [10] that acts as a SOAP client.! The figure
follows the flow of one small piece of information, a field
representing the purchase date of a stock holding, from a web
service response into a field of the Java object that will later be
used for producing HTML. We follow this field because, of all the
fields of a holding, it is the most expensive to process.

Each edge shows the flow of the physical form of some logical
content. In the figure, the same purchase date is shown on three
edges: first as some subset of the bytes in a SOAP response, then
as a Java Calendar (and its subsidiary objects), and finally as a
Java Date. Each node denotes a transformation of that data, and it
groups together invocations of many methods or method
fragments, drawn from multiple frameworks. In Sections 3.3 and
3.4 we discuss in more depth transformations and logical content.

Structuring in this way relates the cost of disparate activity to the
data it produced. Figure 1 shows that the cost of the first
transformation was 268 method calls and 70 new objects, mostly
temporaries.” All this, just to produce an intermediate (Java
object) form of the purchase date.

2.1 Filtering by Analysis Scenario
The extent of a diagram is defined by an analysis scenario that
consists of the following elements:

m The output — the logical content whose production we follow
W The physical target of that logical content
m The physical sources of input data

m Optional filtering criteria, such as a specific thread, time
interval, or call path

For example, Figure 1 reflects an analysis scenario that follows
the production of a purchase date field; its physical target is the
Java object that will be used for generating HTML,; its physical
source is the SOAP message; filtering criteria limit the diagram to
just one response to a servlet request, and to the worker thread
that processes that request. Note how the filtering criteria allow us
to construct a diagram that omits any advance work not specific to
a servlet response, such as initializing the application server.

' We omit the standard data flow notation for sources and sinks,
and instead represent them as unterminated edges.

2 We used a publicly available application server and JVM. Once
in a steady state, we used ArcFlow [1] and Jinsight [7] to gather
raw information about the run, after JIT optimizations.
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Figure 2. Zooming in on the first step of Figure 1 shows how the SOAP framework transforms the purchase date field.

2.2 Grouping Into Hierarchical Diagrams
Within an analysis scenario, the activity and data could be
grouped into data flow diagrams in various ways. In this section
we show how we group activity into transformations, to form an
initial hierarchy of data flow diagrams. We then apply an
additional rule that identifies groups of transformations to split
out into additional levels of diagram.

Applications often have logical notions of granularity that cut
across multiple type systems. For example, a stock holding record,
whether represented as substrings of a SOAP message or as a Java
object, may still be thought of as a record. Other common
examples include fields, subfields, and record sets.

We follow the activity and intermediate data leading to the
production of the scenario's output. The top-level diagram shows
this at a single level of granularity, that of the output. Each
transformation groups together all activity required to change
either the logical content or physical representation of its input
data. Section 3 gives more precise definitions of logical and
physical change. Note that some of the inputs to a transformation
will be facilitators, such as schemas or converters. In the diagram
for that transformation, we also include the sequence of
transformations needed to produce these facilitators. Section 3.1
discusses facilitators in more depth.

While one diagram shows data flow at a single level of
granularity, it will also show those transformations that transition
between that granularity and the next lower one. For example, the
transformation that extracts a field from a record will be included
in the diagram of the record.

We form additional levels of diagram to distinguish the parties
responsible for a given cost. We define an architectural unit to be
a set of classes. Given a set of architectural units, a hierarchical
dataflow diagram splits the behavior so that the activity at one
level of diagram is that caused by at most one architectural unit.
The choice of architectural units allows flexibility in assigning
responsibility for the existence of transformations. In our
experience, architectural units do not necessarily align with

package structure. The diagram of Figure 1 shows the field-level
activity that the application initiates. Other field-level activity that
SOAP is responsible for is grouped under the first node. To
analyze the behavior that SOAP causes, we can zoom in, to
explore a subdiagram.

3. THE DIARY OF A DATE

We now explore the structure of the first step of the diagram
shown in Figure 1. This example illustrates how to apply the
structuring approach, and also shows the kinds of complexity that
we have seen in real-world framework-based applications. We
chose a benchmark that has been well-tuned at the application
level to demonstrate the challenges of achieving good
performance in framework-based applications.

We present an additional three levels of diagram. Two are the
result of splitting according to architectural units (SOAP and the
standard Java library), and one according to granularity.

Diagram level 1. Figure 2 shows the field-granularity activity that
SOAP is responsible for, within the first transformation of Figure
1. The purchase date field flows along the middle row of nodes.
Just at this level, the input bytes undergo seven transformations
before exiting as a Calendar field in the Java business object.

The first transformation extracts the bytes representing the
purchase date from the XML text of a SOAP message, and
converts it to a String. The String is passed to a deserializer for
parsing. The SOAP framework allows registration of deserializers
for datatypes that can appear in messages. In the lower left corner
is a sequence of transformations that look up the appropriate
deserializer given the field name.

We highlight as a group the five transformations related to
parsing, to make it easier to see this functional relationship. The
first step takes the String, extracts and parses the time zone and
milliseconds, and copies the remaining characters into a new
String. The reformatted date String is then passed to the
SimpleDateFormat library class for parsing. This is an expensive
step, creating 39 objects (38 of them temporaries). Below, we
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Figure 3: Further zooming in on the “parse using SimpleDateFormat” step of Figure 2 shows how the standard Java library's date-
handling code transforms the purchase date field.
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Figure 4: Zooming into the first step of Figure 3 shows how the standard Java library's number-handling code transforms a
subfield of a purchase date (such as a year, month, or day).

explore the diagram, to find out why.? It then returns a new Date
object, and joins that object with the original time zone and
milliseconds.

The Java library has two date classes. A Date object stores the
number of milliseconds since a fixed point in time. A Calendar
stores a date in two different forms, and can convert between
them. One form is the same as in Date; the other is seventeen
integer fields that are useful for operating on dates, such as year,
month, day, hour, or day of the week.

In the top row is an expensive transformation that builds a new
default Calendar from the current time. Our Date object is then
used to set the value of this Calendar again. Finally, that Calendar
becomes the purchase date field of our business object, via a
reflective call to a setter method. Java’s reflection interface
requires the Calendar to first be packaged into an object array.

Diagram level 2. Figure 3 zooms in to show the Java library's
responsibility for the SimpleDateFormat parse transformation.
The String containing the date is input, and each of its six
subfields — year, month, day, hour, minute, and second — is
extracted and parsed individually.

* It often seems that things named “Simple” are expensive.

The SimpleDateFormat maintains its own Calendar, different from
the one discussed earlier at the SOAP level. Once a subfield of
date has been extracted and parsed into an integer, the
corresponding field of the Calendar is set. After all six subfields
are set, the Calendar converts this field representation into a time
representation. This is then used to create a new Date object.

Diagram level 3. Figure 4 shows the detail of extracting and
parsing a single date subfield, in this case, a year. Even at this
microscopic level, the standard Java library requires six
transformations to convert a few characters in the String (in
“YYYY” representation) into the integer form of the year.

The first five transformations come from the general purpose
DecimalFormat class. It can parse or format any kind of decimal
number. SimpleDateFormat, however, uses it for a special case, to
parse integer months, days, and years. The first, fifth, and sixth
transformations are necessary only because of this overgenerality.
The first transformation looks for a decimal point, an E for
scientific notation, and rewraps the characters.* Furthermore,
since DecimalFormat.parse() returns either a double or long value,
the fifth transformation is needed to box the return value into an
Object, and the sixth transformation is only necessary to unbox it.

4 It checks fitsIntoLong() on a number representing a month!



4. TRANFORMATION-BASED METRICS

Measures of the topology of a data flow diagram can give us some
clues as to the complexity of an implementation. We can derive
various measures from a single level of diagram, such as the total
number of transformations and the maximum path length. For
example, the first top-level step of converting a date to a business
object field in Figure 1 is implemented by a total of ten
transformations at the next level down — a sign that this is not a
simple operation.

Other useful measures of complexity can be derived by looking at
the entire hierarchy of data flow diagrams underlying a given
transformation. These can give a sense of how “far afield” an
implementation has gone from its high-level interface. Our top-
level transformation hides three levels of detail, and takes 58
transformations in total. There are a total of 8 transformations at
the first level of depth, 14 at the second, and 36 at the third. This
breakdown shows us that much of the activity is delegated to a
distant layer.

As we have seen throughout Section 3, structuring activity by
transformations allows us to associate resource costs with
transformations, rather than with program artifacts as is the case in
traditional performance analysis. This has two advantages. First,
it maps costs more closely to operations which may involve
multiple methods or fragments of methods. Second, it enables
comparisons across diverse implementations of the same
functionality.

5. RELATED WORK

Recent work on mining jungloids [12] addresses a similar
problem to ours, but at development time. They observe that, in
framework-based applications, the coding process is difficult, due
to the need to navigate long chains of framework calls.

There are many measures of code complexity and ways to
normalize them, such as function points analysis [13], cyclomatic
complexity [14], and the maintainability index [19]. Our measures
are geared toward evaluating runtime behavior, especially as it
relates to surfacing obstacles to good performance.

Performance understanding tools assign measurements to the
artifacts of a specific application or framework [1,2,3,7,8,11,18].
Some have identified that static classes do not capture the
dynamic behavior of objects [3,11].

There is much work on using data flow diagrams, at design time,
to capture the flow of information through processes at a
conceptual level [6,9]. In contrast, compilers and some tools
analyze the data flow of program variables in source code [17]. In
our work we use the data flow of logical content to structure
runtime artifacts. This also sets us apart from existing
performance tools, which typically organize activity based on
control flow.

Finally, there is much work on recovering the design of complex
applications [4,15].

6. CONCLUSIONS AND DIRECTIONS

That developers make such reuse of frameworks has been a boon
for the development of large-scale applications. The flip side
seems to be complex and poorly-performing programs.
Developers can not make informed design decisions because costs

are hidden from them. Moreover, framework designers can not
predict the usage of their components. They must either design
overly general frameworks, or ones specialized for use cases about
which they can only guess.

We believe that elements of forming diagrams and grouping can
be automated, for example, by using escape analysis, data flow
analysis that combines static and dynamic information, and
clustering based on descriptive labels (e.g. ones that identify data
structures as records or fields) and application/framework
boundaries. Programmers and designers must however remain a
critical part of this process. Automation will also enable
validation of the approach against a larger set of applications.
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Abstract

Software libraries have long been an integral element divsoé
development. Recent advances in areas such as softwanecprod
lines and extensibility mechanisms have focused renevedtein
on collections, particularly heterogeneous collectiafssoftware
artifacts. The contribution of this paper is to propose a ehdar
a software library. Our work creates a framework that is abstract
enough to encompass many kinds of software libraries betyarsed
used for the sort of programming constructs normally carsid.
This allows quite disparate collections to be understodtiwithe
same framework. Notable to our work is a discussion of the o6l
context and deployment to libraries. A comparison of our eld¢ol
existing models is provided. A number of different typesiofdries

are analyzed to demonstrate the power of our model and to show

how it leads to better understanding of several types ofvsoé
collections.

Categories and Subject Descriptors

D.2.2 [Design Tools and Techniqués Software libraries; D.2.13
[Reusable Softwarg Reusable Libraries; D.2.1Reusable Soft-
ware]: Domain Engineering; D.2.1He-quirements\ Specifica-
tions]: Methodologies

General Terms

Design, Standardization

Keywords

Modeling

1 Introduction

Software libraries have long been an integral element divsoé
development. Recent advances in areas such as softwanecprod
lines and extensibility mechanisms have focused renevtedtein

on collections, particularly heterogeneous collectiafssoftware
artifacts. The contribution of this paper is to propose a ehdar

a software library, briefly contrast our model to existing models,
and show how it leads to better understanding of severaktgpe
software collections including: Dia Shape Sets, Eclipaeyihs
and software product line asset bases.

This model creates a framework that is abstract enough tonenc

pass many kinds of software libraries beyond those usetiéosdrt
of programming constructs normally considered as libgari€he
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model allows quite disparate collections to be understatiiimthe
same framework. Notable to our work is a discussion of the obl
context and deployment to libraries. A comparison of our etod
to existing models will be provided. A number of differenpgs
of libraries are analyzed including Dia Shape Sets, the Saiag
Library, Eclipse plug-ins and software product line assestds.

2 The Importance of Models

The development of a standard vocabulary, requiremendssap-
porting models is an important step in the maturity of a ditice.
Having the common understanding of an area that a model san fo
ter has many advantages including:

e Improved ability to discuss problems and solutions

e A common understanding of the available design space
e An ability to compare solutions and techniques

e Guidance for those new to an area

The OSI seven layer model of a computer network [11] is a @lass
example of how a model can support the evolution of an area.

A better understanding of a domain, in this case the domali of
braries, should allow development of better products. kanmle,
our model explains the connection between a library and eoeum
of issues including how its assets are deployed onto pradusys-
tems and the relationship between deployment issues arssatisa
binding times. This is an area that is frequently ignoredbrary
development, but may greatly effect the usefulness of thrardy.
By providing advice about these issues we enable the develop
of better libraries.

3 Current Usage

While libraries are referred to frequently in the literatua com-
prehensive definition has been lacking. Most writers areéesdrio
use the formula: "A library is a collection of X.” Where X call
be almost anything: functions, classes, architecturescases, test
cases, documentation, specifications, or other artif&tamining
how the term library is currently used, we find two differetr{
spectives on library use:

1. A collection of software artifacts used by a developerpwh
is normally in a different organization from the library ere
ators, to assist in the development of a program. Here the key
problem is how someone unfamiliar with the contents of the
collection finds and selects useful items. This often assume
the need to adapt the items found. The actual mechanisms, by



which products are composed, are not generally discussed.

. A mechanism that holds a collection of artifacts for the-pu
pose of facilitating composition with a product. The compo-
sition mechanism is often defined by the operating software
or an intermediate runtime environment. Dynamically lidike
libraries (DLL) are an example. In this case, itis assumad th
the desired items can be located and adaptation is not needed
The library users’ problem of understanding and selectiig a
sets is ignored.

While not contradictory, these two different uses of thent@oint
to different aspects of libraries, both of which must be we®d
to gain a complete understanding.

4 Why Call It a Library?

The general notion of a library has several characterititetsapply
to software libraries including:

e Library refers to both a collection of items and a facility in

which to house the collection.

Libraries typically organize their collection in a systdina
manner and may limit their collection to have a common fo-
cus.

Items are gathered together into a library to improve access
and management.

The library makes the items more public or available.

The container for the items, be it a book case or building,
improves access to the items.

The library differs from a storage warehouse in that itenes ar
intended to be accessed frequently and individually.

The library differs from a repository by making items more
public, where as a repository removes items from circufatio
making the stored items more protected, and in the process
more private.

Modern libraries are collections of many types of elements
such as books, videos, computer programs, and many other
elements.

The goal of a library is improved access and use of the iterits in
collection.

Software libraries have the additional constraint that reate them
for the purpose of helping to develop products. As a restuifjen
items in the general case are typically free standing gsseist

assets in a software library will be parts or modules thatiaeq
their ultimate usefulness only when combined with otheetsss
either from another library or custom assets, to form a pcodu

With this background, our basic definition for a softwaredity can
be stated as:

e A collection of composable assets,
e that contribute to building a product,

e aggregated within a mechanism that holds the collection for
the purpose of promoting reuse by providing greater accessi
bility,

e for use by others.
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5 A Software Library Model

In this section we present the results of a domain analysisaft-
ware library. We use this method to present several in-depth dis-
cussions of the concepts found in the domain. We use the dnifie
Modeling Language (UML) to describe the results of the asialy

The model we present is intended to be abstract enough to cove
a very broad range of libraries, not just those containirggymam-
ming language artifacts. Take, as an example, a drawingamog
that lets its user build a complex form and then store it inpalette

for future use in other drawings. Such a palette of objectgw
implemented in software, can be considered a softwarerjibvse
want to be careful that such an example can be described by our
model. Once a model of this generality is established, ittban

be specialized for more common examples, such as progragnmin
libraries, or even further specialized, perhaps for clifsaties. We
defer these more specialized cases to future work.

5.1 Use Cases

We begin with the use case diagram of the domain, shown irr&igu
1

The domain has three actors:

e The Library Developer provides the contents of the library.

e The Library User creates or maintains a product and composes
the library’s assets into the product.

e The Client Product is the product composed using the library
assets. For some composition mechanisms the product acts
directly to compose itself with the library. For example; re
solving and executing a branch to use a shared library. In
other cases, the client product is passively assembledeby th
library user. Even in these passive cases, the assets in the |
brary must conform to the mechanisms used to compose the

product.
The diagram has the following high level use cases:

e Design a Library - Since we believe that a library has more
coherence then simply a collection of assets it should be de-
signed as such. One obvious design activity is scoping, as a
particular library should focus on a set of related absivast
Library design also establishes the context in which thetass
are intended to be used. Libraries should be designed so that



they are: complete, consistent, easy to use, and efficignt [8 Asset
A key to designing a library is understanding how it is used

and how the division of roles between the library developer | “OeX

and the library user effects the design. This paper will focu A
on these use issues, rather than the design issues of g.librar | |

Supporting Asset [~ Product Asset

e Add an Asset - The library developer creates the library by Composite Asset
adding one asset at a time. Left implied is the ability to re-
move and modify assets already in the library. Adding an
asset is singled out from other development activities as th

result is visible outside the development environment.

Asset Package

e Adapt an Asset - By adaptation we mean the process of man-
ually modifying a pre-existing asset for a new use. In thecas Library
of code, this is also referred to as code scavenging [9]. Adap
tion may be applied by a developer, or a library user in the
case that the library user has access to modifiable asset, typ
ically source. Adaptation may be applied to any pre-existin
modifiable asset, not just library assets. For example, code ) )
examples from a text book could serve as the source for adap-collect assets - the library and the deployment container.
tation. While library assets may be adapted there does not
seem to be any unique role that the library plays in this pro- 5.2.1 Relationships between Assets
cess that distinguishes it from other asset sources, astisch
not considered further.

Deployment Container

Figure 2. Top Level View of Library.

The dominant relationship among the assets, at a concdpta|
is described by the composite design pattern [6]. This neceg
that one relationship among assets is hierarchical, issgta may
be composed of other assets. This has different implicatfon
the different asset types. In the case of simple assets upracd
supporting - this means that existing assets in the libraay e
e Compose an Asset - The library user must be able to com- used to compose new library assets.
pose assets into products. The ability to compose an asset
into a software product in an automated fashion is what dis- For deployment containers the composite pattern provitieset
tinguishes a library from other collection of software fais. types of relationships:
Assets in the library must be designed to support composi-
tion. It should be noted that some composition mechanisms 1. A deployment container could contain a collection of danp
are more flexible than others. The C++ template mechanism assets for which it provides a composition mechanism. This
allows the related code to be composed with a variety of vari- is the most common case.
able types. This sort of flexibility, does not use manualrinte
vention, does not change the original asset, and does not add
additional assets into the library. These difference mligtish
this sort of flexibility from adaptation.

e Find an Asset - The library user must be able to find assets
that are appropriate to his problem. The user must then be
able to understand the asset in order to determine whether th
correct asset has been found.

2. A deployment container could contain other deployment co
tainers as one way to supply additional composition mecha-
nisms. An example is an Eclipse plug-in which uses a jar file
to hold executable assets.

Conventionally, we think of the library user as being a peidie-
veloper, who selects particular pieces of a library to be posed
into the product. In this case, the ability to search withia library

. A deployment container could contain a library. This vebul

provide a way to move the library as a unit to other develop-
ment systems.

is important. For products that have an open extension dépab ) ) ) )
the end user who is engaged in product composition, is tharjip ~ For a library the composite pattern provides three typeslation-
user. For example, the end user might modify a web browser by Ships:

composing it with a plug-in. In this case, the user typicalbes
not search and select from among library assets, but indez@des
whether to compose a feature.

1. Alibrary contains a collection of all the simple assetss ts
the reason we have a library.

2. A library contains a collection of deployment containers
Having more than one type of deployment container allows
the library to offer more than one type of composition mech-
anism to client products.

Allowing a user to compose features has the effect of crgatin
domain specific language, a language that corresponds prdbe

lem domain and does not require understanding of or accebs to
solution domain. This is an important distinction from aidaijon, 3
which requires access to and understand of the solution idpma

and does not provide a new problem solving vocabulary.

. A library contains a group of related libraries. The cahte
of a contained library must inherit the context of a contagni
library. A library may have more than one parent library.

5.2 Concepts 522 Assets

The concepts needed to describe a library and its assethk@mds  The items we collect in the library are assets. We call thepetas

in a class diagram in Figure 2. We provide a glossary in Table because we assume that they have value or we would not bother t

1 to give a brief definition of the classes in the diagram. Tég k  collect them. We divide assets into product and supportisgts.

abstractions in the diagram are assets of various typesai@tplar Product assets are composed into a product. A supportire ass
note are two types of composite assets whose main purpose is t helps us make use of a product asset. For example, a Javag®dc pa
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Table 1. Glossary

Asset an item that has enough value for us to col-
lect. Three types of assets - product, syp-
porting, composite

Product Asset | an item that is composed into a product

Supporting As-| an item that supports use of a product asset,

set such as documentation

Composite As-| acollection of assets; Types of composite as-

set sets - library, deployment container

Asset Package | shows the relationship between a product as-
set and its supporting assets

Library collects assets and deployment containerg

Deployment collects product assets in a way that is com-

Containers posable with a client product

for the Swing GUI is a supporting asset for the Swing clagsiip

A product asset is not necessarily an executable asset. pAfiteel
shipped with the product is an example of a non-executaloléyat
asset. A build script is an example of a supporting assetishat
executable.

What distinguishes a software library from other collectiof soft-
ware assets is the ability to compose library assets wittoduat,
identified in the compose an asset use case. The importasog-of
porting this use case is what motivates the distinction betwprod-
uct and supporting assets. The asset package relationshipsy
supporting assets with the product asset with which theigtad$
an asset package does not include a product asset, it canooirh
posed into a product.

While executable modules, such as program functions, arelth

est and most widely used asset type, every phase of softweare d
velopment can take advantage of reusable assets, andry liara
assist in increasing the reuse those assets. During thiicatan
phase, we might use a library that includes standard use ¢ase
some category of product to compose the use cases for owr prod
uct. During the high-level design phase, we might use arjitzat
includes UML diagrams describing standard subsystems o co
pose the product architecture. During the detailed dedigise, we
might use alibrary thatincludes pattern languages to ghieleom-
pletion of the design. During the implementation phasebgaty
that includes code fragments might be used by a program ggemer
or an aspect weaver.

In most existing libraries, the product assets of a librandtto be

of the same type or at least apply to the same developmené phas
However, the assets in a library do not need to be homogenkdris
can gain considerable power by including all of the assetdee to
produce a particular product. For example, a library migbtude
assets, such as UML diagrams, that can be used in the desiga ph
along with the executable assets needed for that product.

The assets we set out to collect are product assets, thaxts test
become or produce part of a product. The most common example i
a source file in some high level language that compiles inioka |
able executable. However, other inputs to a build procesd) as
frames, meta-models, layers, etc. may play the same rolmigtst

a collection of predefined shapes for a drawing program. Tpe s
porting assets are collected to assist with using a prodissta If

the product asset is removed from the library, the supppassets
should be removed as well.

The idea that assets are collected to build products mearabtlity
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to use an asset in multiple products is a planned result.isrview

there is no such thing as a truly “general purpose” asset,ctira
be used in every setting [10]. We build a particular thing #mel
thing we are building imposes requirements on its parts T3je

possibility of meeting these requirements by chance ark dpiv,

this rules out several approaches to acquiring assetsakatteen
commonly used.

5.2.3 Library

The term library refers not only to the contents of the assk¢c-
tion but also the mechanism used to collect and manage thtsass
The library has several attributes that are unique. Tharbis the
level of abstraction where all three of the users we ident{fierary
developer, library user, client product) are addressed.

To assist library users, library developers provide a nurobsup-
porting assets to explain and guide using the library. Thibsary

level aids might include such things as tutorials on the dshe
library and example programs that show how library assetthimi

be used to solve a common problem. The library may contain one
or more search mechanisms, whose primary purpose is ta tsis
library user in finding assets. To support client progranbsaties
should make product assets available in a composable wy of
through deployment containers.

The library should add value beyond the value of the contaase
sets. The services provided by a library include:

e Collection support. Allow assets to be used as a group of indi
vidually. For example, copy or move an entire library ingtea
of each of the contained items.

e Access or composition support. Assets are intended foryise b
client programs outside of the library. It should be posstbl
compose an asset in a client program without copying it out
of the library. The library may provide multiple compositio
mechanisms that support different binding mechanisms.

Selection support. A recognized truism in reuse is that an
asset must be found before it can be reused [9]. This problem
is more obvious in libraries since library users are a sépara
group from library developers. The library should provide
support to the user to find assets.

5.2.4 Deployment Containers

Deployment containers allow the library’s product assetsetcom-
posed with client programs without access to the librargigetbp-
ment environment. Independently deploying a subset ofiltiharl
assets in a composable way is the key to a library’s abilityhi@re
and make public its assets, in contrast to other deploymemt c
structs, such as repositorlest is so fundamental to the library that
the deployment container is often confused with the libras/can
be seen from the use of the term “dynamic linked library” fdray
is actually only a deployment mechanism.

We can divide deployment containers into two categories:

1. Those that deploy library assets to product developmest s
tems. An example is the statically linked library, which is

1Recent literature often uses repository as a synonym fiarljb
but typically ignores the aspect of deploying assets awamy fihe
development system. It is not clear if this difference is ni¢a
distinguish the two.



composed during the development phase by a linker. De-
ployment to a product development system includes progidin
those supporting assets that assist the product developer.

2. Those that deploy library assets to production systems. E
amples include the DLL (dynamic linked library) which the
client links to at runtime. Putting deployment containens o
the production system has the advantage that a single copy of
the library assets can be used by multiple client programos. F
example, most operating systems provide only a single #O li
brary for all of the hosted applications.

The composition mechanism supported by a deployment cwntai
determines the point in the software development procestiah
composition with the client program takes place; this isviinas
binding time. Libraries are usually assumed to have a siviglging
time, but this does not have to be the case. A library may have
multiple deployment containers, each supporting a diffebénding
time.

Once dispatched from the library development system, tpoge
ment container and its enclosed assets are no longer ureera
agement of the source control system. Therefore, deplolyooen
tainers need a method of versioning independent from thatthefr
development assets.

5.2.5 Context

All software artifacts are used in a particular setting or
environment[10]. In this model, context represents thérenment

in which we intend to use the library assets. Context is ihetlin

our model to support the compose asset use case. As Alexander
discussed in his classic teakettle example, the corrextifesn ar-
tifact can only be understood in relation to the context intoch

we expect them to fit [1]. Alexander points out the dimensiions
which an artifact must fit its environment are not enumerabte

a complete model of context is not possible. We show the major
areas to be considered and discuss how context affectsqirdeu
velopment. Figure 3 shows our view of context as it applies to
libraries.

We divide context into two parts [5]:

e the product domain, which describes what we are trying to
build

e the solution domain, which describes how we can build a
product
We further divide the solution domain into two parts:

¢ the platform, which specifies the library’s dependences

e the architecture, which defines how the assets may be com-
posed

If our library is contained within another library, its cemt includes
that of its containing library. The contained library maypiose
additional requirements but must continue to meet all tiogliire-
ments imposed by the containing library.

We associate the context with the library rather than thévidd
ual assets. This differs from other proposals, notably thGO
Reusable Asset Specification (RAS), discussed in secti@n 5.
There are several advantages to our approach:

e Context can be used to group assets. For a given project, we
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Figure 3. Context Detail.

are typically only interested in a particular context. Fgrr e
ample, a particular hardware platform or language may have
been chosen for the project. Placing the context at theriibra
level allows the entire collection to be evaluated, at lagstis
course level of decomposition, for suitability to the puatje
without examining each asset.

One of the barriers that prevents a library user from usieg pr
existing assets is the difficulty in understanding thosetass
This difficulty can be considered an additional cost of using
the library, which in turn may cause the library user to cleoos
to develop a new purpose built asset as a substitute for a pre-
existing asset from the library. Placing context at thedlifpr
level allows the cognitive effort of understanding an asset

be reused, at least in part, over the other assets in theylibra
Thus, lowering the average cost of using a library asset.

A shared context makes it more likely that assets from the
same library are compatible. If there is no common context
the inter-operating components may place different imeerp
tations on data values leading to incorrect results. An exam
ple, this occurred recently when one component in the Mars
Climate Orbiter pro-ject used english units and another-com
ponent used metric units, resulting in the loss of the space
craft. The loss of the first Ariane 5 rocket was due to a com-
ponent that expected a different size for a numeric paramete
then what was provided by another component. We will often
want to use more than one asset from a library in the same
product, such that the output from one asset will become in-
put to another. An example where many components from the
same library typically inter-operate can been seen with GUI
libraries. Think of the difficulty if each widget used a diffe
ent unit of size (pixel, point, pica, inch, centimeter, ptand

a different coordinate system for positioning.

Many characteristics of a good library [8] depend on thetasse

in a library exhibiting similar behavior and usage chamste

tics. This similarity can most easily be achieved by placing
context once at the library level, rather than trying to nesu
that contexts for each asset have the same values. Examples
of such characteristics are: consistency, ease-of-leguand
ease-of-use.



6 Contrast with Other Models
6.1 |EEE Standard 1420.1

Despite the longevity of the software libraries the onlyjwes at-
tempt we were able to find to provide a model was made by the
Reuse Library Interoperability Group (RIG), an industrynsor-
tium [3]. Their work was published as IEEE standard 142Q.1[7
Their goal was to provide only an interface definition to exute
libraries, not a complete model. Much of this work is related
tracking software certification and specifying intellesdtproperty
rights, which was codified in standards 1420.1a and 142@ib r
spectively. These issues are not of interest to us and wilbeo
considered further.

The model provided includes only a class diagram; there isseo
case diagram. This makes it difficult to be sure what they sdébea
overall role of the library. The existence of pre-existiitgaries in
the model implies the role of library developers. The use ¢hsy
explicitly support is selecting an asset for reuse. Therething
in the model to specifically support the composition of asgéth
client programs.

In the class model there is no equivalent to deployment auerta
which selects and supports assets for composition, thisfails to
support a way to specify binding times. The library clas&s$aany
attributes to assist in selection or limit searching withooking at
all the assets contained. There is no way to specify a constra
the asset to be included in a library. This is somewhat ssingias
members of the RIG group stated that they believed libratiesild
be focused, specialized, collections, not general pufBps®lov-
ing the domain attribute from the asset to the library classld/
help here. The role of architecture in reuse is completetpigd.
There is no distinction between assets that are used in toigr
and supporting assets. In short, the role of context is iphor

6.2 OMG Reusable Asset Specification (RAS)

OMG Reusable Asset Specification (RAS) [12] primarily madel
assets, however, it also models the relationships betwssets and
even (briefly) discusses a repository for assets. In thisemade
asset, which is often referred to asasset package in the standard
is composed of 5 parts: solution, profile, usage, classificagnd
related asset. The solution asset corresponds to our gragset.
The other parts make it easier to work with the solution, Whic
corresponds to our supporting assets.

While we provide a descriptive model, RAS is a proscriptige a
proach, which imposes requirements related to OMG’s Model
Driven Architecture (MDA). It is interesting that to prowdauto-
mated assembly in MDA a large amount of context informatgn i
required. RAS puts its context information at the asset lé&has
been noted, this means all use decisions must be made fomsach
set, instead of reusing information about the collectiomriactice,
this may be mitigated by a combination of the large grantylai

the components intended for RAS and the planned developofient
detailed implementation profiles.

Context

Product Domain = drawing
Platform = XML

| Shape Family : Library |

Asset Package

Shape - XML : Product |_
Icon - PNG : Product

Figure 4. Dia Object Diagram.

| Sheet : Deployment Container |

actual composition of assets. The text mentions that therseces
are intended for small and medium repositories. Howevés, ribt
clear how the “centralized access and storage” is relatdtbtoul-
tiple repositories. Also, there is no guidance on why antasseld
be in a particular repository or how assets in a particulpose
tory are related. The glossary also defines a reusable &usey|
as a“conceptual composite artifact that encompasses sdlilge
reusable assets” which sounds much like the failed genarpbge
library paradigm. This concept of library is not otherwiséerred
to in the document and does not explain its relationship ltabie
asset repositories.

7 Analyzing Some Examples

To validate our library model we analyzed a variety of lilar to
check if the model can describe them. Here we present as ¢éasimp
Dia Shape Templates, the Java Swing Library, Eclipse ptsgend
Software Product Line asset bases. Swing will represenpiadly
class library. Eclipse and asset bases are not generallglihof as
software libraries; however, they are collections that it library
definition. Studying these examples can show how more axtens
use can be made of libraries particularly in terms of impdoasset
composition. They illustrate the importance of contextibwdry
usage. They also provide an example of how a standardizedlmod
can help explain new material.

Both Eclipse plug-ins and Software Product Lines will shosv u
something about the future directions of the software fijoido-
main. Domain choice drives the architecture and relateides
rules. Having a well defined context for product and solution
mains supports the design of assets that are composableutvith
modification.

7.1 Dia Shape Sets

The Dia drawing program allows users to define shape sets. The
object diagram for Dia shapes is show in Figure 4. Dia is a draw
ing program designed to draw different types of diagrameoittes

with shape sets for drawing such things as electronic citiar
grams, UML diagrams, flowcharts, etc. The main abstractibas

The RAS standard also defines RAS Repository Services. Theseprogram works with are shape objects and connectors.
define Java and HTTP methods to store and retrieve assets from

a RAS Repository. However, no model is provided for the repos
itory. The RAS glossary defines a repository as: “A centealiz
access and storage point for reusable assets.” It is nat frtea
this which use cases are envisioned. It does not seem toentiod
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The basic asset type in Dia is a shape. Dia supports the tierar

cal composition of shapes. Existing shapes can be usedwoalra
new compound shape, which can be saved as a shape. Shapes can
be collected into sheets. This allows related shapes to It



Context to the generated web pages for each of the classes in theylibitze
oot D= o links to the class web pages form the primary index for theafi
Platform = Java based on an alphabetized list of class names. Since thisrdocu

tation conforms to the standards for the web, any web-basamtis

engine can provide an additional basis for search usingnexth-

| Web Page : Library Doct i |ng

The Java language uses dynamic class loading rather thandin
While the executable class files can be used directly by atgie-
gram, Java also defines an archive file format, Jar, whictesers a
S | deploy_ment container. Th_e Jar was designed to move a doteatt
- class files around as a unit. Jar files have roles beyond deplaty
A client program can load a class from a Jar file without unpagrk
it. If a program’s main method is in the Jar file, it can be tapge
Figure 5. Swing Object Diagram to execute WithOl_,lt unpacking the Jar file. Jar files can aldodie
' ’ security information about a group of classes.

Asset Package

Much of Java’s success is attributable to the support peavidr
libraries. Javadoc provides Java libraries with extensivaintain-
able documentation that has a consistent look and feel andsiss
tent search mechanism. The Java virtual machine providasda h
ware independent platform thus eliminating one major aspfear-
chitectural mismatch. Many issues, such as memory manageme
normally left to applications are handled by the Java ruatenvi-
ronment, reducing the number of different context depeciésn

together. For example, AND, or, NAND, and XOR shapes are col-
lected in a circuit sheet. Sheets allow a set of shapes to lkexpu
into the program as a group and made readily available todee u
Adding a shape set extends the programs capabilities.

A typical asset package, for a shape, has two product asskis,
which provides an icon to represent the shape on the palettem
and a file which has an XML description of the shape which the
Dia program can translate into a drawing. A sheet acts as a de-
ployment container, grouping a collection of shapes tcgretimd i i
making them available for composition. In this case thealipuser 7.3 EC“pse pluQ In
is working interactively with the library, so the search lestion
mechanism is integrated into the client program. The udecte

a shape by choosing a sheet from an alphabetized list of name
Choosing a sheet causes the icons for the sheet's shapesli® be
played in a palette window. While the program comes with gdar
number of shapes, and allows new ones to be built, the abdlity
organize shapes into groups with the sheet mechanism kkeps t
number of shapes being worked with at a given time to a manage-
able level even with these simple search mechanisms.

Eclipse is a modular, open-source product that provides<eene
sible Integrated Development Environment (IDE) [13]. Itabis
Sto provide a single user environment that supports the iiatem
of development tools produced by different organizatidaslipse
allows the user to build a version of the product that fitsrtheeds
by installing appropriate modules. While Eclipse is veryduo
lar in many ways it is also designed to fit the needs of a specific
domain (IDE), a specific platform (Java), and provides a ifipec
architecture that modules must adhere to in order to be csetpo
An object diagram which presents Eclipse modules as a itisar

Even though Dia shape sets are rather different from whabris n provided in Figure 6.

mally thought of as a software library, they meet both ourarnd
standing of a library, as well as the current usage of the,tdrat is
a collection of assets. This object diagram shows that outefrie
able to accommodate them as well.

The typical Eclipse module provides a development tool osely
related tools. For example, to support a compiled languegeires
not only a compiler, but also a language specific editor, tatap
for the different file types in the language, debuggers, swizaand

7.2 Java Swing Library a variety of documentation. Eclipse differs from most liea by
the emphasis it puts on supporting assets; and its suppoesf

The Swing library is typical of Java class libraries. An abjdia- module composition after deployment.

gram for the Swing library is provided in Figure 5. It is siarilin

structure to many other class libraries, but provides abelthcu- Tools for Eclipse are deployed as features. A feature is ayod

mentation specification and supporting tools (such as davadd plug-ins that are deployed or upgraded together. For the thee

Jar files) than most library systems. feature is the unit of both deployment and versioning. Riali a
feature is composed into a compressed file, to allow it to beaho

A typical asset in a Java library is a class including the sppeom- as a unit. Each plug-in in the feature has its own directolygfhs

ments that are used as input for Javadoc. Physically the @as provide or support different parts of a feature, as theyrekuif-
defined in a single source file ending with a .java suffix. Tlesgl ferent parts of the Eclipse platform. For a compiled langyage
source code file is the input to the Java compiler to produateems would expect the editor to be placed in one plug-in, whiledb-
file and to the Javadoc tool which will produce a hyperlinkesbw piler, which can be run without a user interface, would be difa
page to document the class. The asset package for each dlass w ferent plug-in. Each plug-in must provide a specificatiailed the
bundle a Java source file, executable class file, and a web page  manifest, written in XML, that describes the plug-in to theifse
platform. Beyond the manifest, the assets provided for g-piu
The library provides documentation, a search mechanisih,aan  vary. If a plug-in has an executable portion, it must conzistava

deployment container. Javadoc specifies a standardizethfate- class files collected in a Jar file, located in the plug-in clivgy.
scribing the library as whole. This page provides hypettieks to This is an example of one deployment container, the plugen;
other library documentation, such as tutorials, and hygpettnks taining another, the Jar file. Documentation is stored irpthg-in
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Figure 6. Eclipse Object Diagram.

directory as html files, and may be put into its own plug-in taken
it easier to internationalize. Other assets found in phgight
include icons, images, web templates, etc.

The Eclipse model provides support for all three of our usesa
Adding assets is supported by a number of tools, such astigeiPl
Development Environment (PDE), which provides wizards &bkw
the asset developer through the process of adding assatsh®e
and understanding assets is supported by search feataras ax-
pandable help system. Plug-in assets can specify how ttwydsh
be included in the table of contents for the help system. A-num
ber of ways to compose assets are provided. Plug-ins carfynodi
the behavior of other plug-ins by extending them in an irthede
relationship or can use other plug-ins by specifying a ddpeay.

7.4 Software Product Line Asset Bases

“A software product line (SPL) is a set of software-inteessys-
tems that share a common, managed set of features thay shésf
specific needs of a particular market segment or missionteatcte
developed from a common set of core assets in a prescribetl way
[4] SPL scopes which products will be included in the prodinz
early in the analysis. This allows the development of a comare
chitecture which has explicit variation points identifgiwhere and
how different product within the product line will vary froeach
other.

The core assets are collected in an asset base to be useckin dev
oping the products included in the software product linee ak-

set base is a heterogeneous collection, which includessafse

all development phases, from requirements to implememtatit

is tightly scoped to include only assets that will be used oren
than one product in the SPL. A SPL may use library mechanisms
to group and prepare implementation assets for composititin
products. Thus, an SPL's core asset base is an example oégylib
containing libraries. While specific to a particular grouppood-
ucts, the size of an asset base may reach millions of linesds.c

The major differences between an SPL asset base and adnadliti
library can be seen in the context provided and the reldtiprize-
tween reusable asset and the products built with them. Thel&P
velopment process begins with a domain analysis which thdar
defined by a selection of features to be supported and a gm@upi
of those features into products. So the product domaingodf
the context is well defined for SPL. The product domain ishfert
constrained by the selection of products that will be suigabby
the product line. In contrast, other than a tool domain, sicGUI
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development, we typically don’t know the bounds of the picidu
domain for a reuse library. Within the product domain a tiadal
library is intended to be used in an open set of products.

In the solution domain, an SPL will typically define a single a
chitecture to be supported. A typical reuse library wilkatpt to
support multiple and undetermined architectures, ofteriraj for
the difficult goal of being architecturally neutral. SPLsynsaipport
multiple platforms, but the platforms supported are madeiex
The influence of platform variants can be shown in the vanmati
points of the SPL's architecture. Reuse libraries typjcallpport a
single platform, but platform information is often implici

The relationship between the collected assets and the giogro-
duced also differs. SPL products are made primarily by abbeg
assets from the asset base. Ninety percent reuse levejpara in
product lines, with many reaching a hundred percent. Akestor
a product line are collected in a single asset base. All oatsets
in the asset base should be used in multiple products. Toadlit
reuse libraries support a much lower frequency of reusecaiip
not exceeding fifty percent. Achieving this involves findingder-
standing, and using many different reuse libraries. A gperduct
will use only a small percentage of a library. It is possiblattmany
library assets will never be used in a product.

These differences are summed up by Clements “Software produ
lines represent a significant departure from software eessukemes

in which attempts are made to make assets as general aslpossib
without the context provided by an architecture and a scafie d
nition, and from opportunistic reuse schemes in which layeff
assets are scavenged ad hoc from a reuse repository.” [4].

7.5 Summary

These brief examples show very different collections. Hpetand
strength of relationships among the elements in the libsaare dif-
ferent. In the Eclipse example, the elements would be eggect
be consistent with one another. On the other hand, a pradecis-
set base may contain assets where chosing one asset exttodes
ing another, an exclusive-or relationship. The Eclipserg{a has

a very clear need for completeness - the plug-in needs to work
while the product line asset base may be quite incompletererh
are several directions in which this work needs to be extnde

1. The existing model should be applied to additional types o
libraries. The examples in this paper, Dia shapes setqdecli
plugins, and software product line asset bases, in addition
the programming libraries normally considered, suggest th
diversity of libraries that should be addressed.

The model is presented at a very abstract level to allow it
to cover the maximum range of libraries. Specializations of
the model should be developed for important categories of li
braries, the most obvious being programming libraries.sThi
more specific model could consider common programming is-
sues such as error handling and memory management. A pro-
gramming library model could be further specialized to han-
dle common cases such as class libraries, active librates,

2.

8

Software libraries are one of the oldest, most used appesatth
software reuse. Despite their long past and interestingduthere
has been almost no research on libraries as a product doBesead
on experiences with other product domains, a thorough domai

Conclusions



analysis advances the state of the practice.

We have presented an analysis of libraries as a product dobexi
ginning with the definition that a library is: A collection abm-
posable assets, that contribute to building a product, ezgded
within a mechanism that holds the collection for the purpafggo-
moting reuse by providing greater accessibility, for useothers.
While this covers many different types of asset collectitnex-

cludes many as well. A contrast can be seen in the World Wide

Web. The web is a collection of assets, including softwane, i&

provides search mechanisms to assist in finding the deséset.a

Yet, it is not a software library, because most of the assetsat

intended to be composed into products and because the wsb doe

not provide a composition mechanism.

[6]

[7]

E. Gamma, R. Helm, R. Johnson, and J. Vlissid&sesign
Patterns. Addison Wesley Longman, Inc., Reading, Mas-
sachusetts, 1995.

IEEE. Data model for reuse library interoperability: Ba
interoperability data model (bidm). Standard 1420.1, IEEE
1982. Standard for Information Technology - Software Reuse

[8] T. Korson and J. McGregor. Technical criteria for the @pe

9]

10] J. McGregor.

We have provided simple, but comprehensive, use cases. We ha [11]

three actors (library developer, library user, and cliengpam) and

three essential use cases(add an asset, find an asset, gomseom
an asset). With these use cases we avoid focusing exclusivel
either the search problem or the composition problem. Asalte
we highlight the need to be able to compose the assets fotmd in

product.

In our model by making the deployment container a separate en

tity and allowing multiple instances, we open the way forpap
of multi-binding time libraries. By making a clear provisidor a
multi-binding time library we provide the opportunity foetter li-
brary support for product lines, where multiple binding s a
significant issue.

Finally, we have clarified the relationship between a liprand its
context. There is growing acceptance that reusable saftner
quires an explicit context. This applies to libraries aslwdlhe

library context includes both product domain and the sofutio-
main of both platform and architecture. Our model identifies
appropriate concept with which to associate context isitirary,

not the individual asset, as has been the case in other wiatking
context at the library level allows assets to be grouped Inyeca,

allows better reuse of developers understanding, and pesdihne
situation where a library’s assets are compatible with edloér.

Libraries continue to be an important means of providingadle
software; however, they are still understood, designedbaiiitin

an ad-hoc manner. This paper by providing the top level requi
ments and model is intended to provide a starting point fayra-c

prehensive approach to library development and use.
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ABSTRACT

Boost is a loose organization of C++ developers dedicated to the
creation of high quality C++ libraries. It can be found at
www.boost.org [1]. This article describes the process of getting a
library accepted into Boost along with advice from one who has
been there.
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1. WHAT ISBOOST?

Have you ever wanted to:
e doaredly, redly good job at something?

e providethe “definitive” or best solution to some
problem?

*  make something that lots of really smart people would
appreciate and use?

¢ work to ahigher standard than your current job requires
or will permit?

¢ demongtrate that you are really a good programmer?

Maybe you want to consider making a library and submitting it to
Boost.

www.boost.org is a loose organization of C++ developers
dedicated to the creation of high quality C++ libraries.

Boost libraries are distinguished by:

e Wideapplicability —libraries are usualy things that are
widely applicable. The effort required to write alibrary
and get it accepted to Boost is not justified unless the
library is going to be re-used many times. For this
reason, many (though not all) Boost libraries are
fundamental building blocks like smart_pitr,

¢ Asacorollary to the above, Boost libraries are portable.
They are written to the C++ language and library
standards with work-arounds for bugs in specific
compilers. Most Boost libraries leverage on idioms

already in boost which aready have been implemented
in aportable way.

*  Another corollary to the above isthat Boost libraries
tend to strive to be the “best” or “definitive” solution to
aparticular problem.

e Thereisrelatively little repetition of functionality
within Boost. If thereisabest and/or definitive
solution to a problem, other libraries generally
incorporate it.

« Boogt libraries often use cutting edge techniques such as
template meta-programming to achieve desired goals.

e Boost libraries strive for high quality. Thisis attained
via an exhaustive testing discipline and corresponding
infrastructure.

The above common library features are the result of avery public,
rigorous and iterative peer review process that draws on the
experience and knowledge of the entire Boost community.

Boost libraries cover a wide range of functions and applications.
Among the most wildly used are regular expression parsing
(regex), smart pointers (smart_ptr), threading, date time, file
system, preprocessor, testing and correctness and others. It is
really not possible to convey in a short paragraph the breadth of
these libraries. A completelist can be found at [4]

All Boost libraries are subject to the Boost License [2] which is
designed to permit usage of the library as widely as possible.

As the author of the recently accepted Boost Serialization Library,
| can attest that making alibrary and getting it accepted into Boost
is much harder than it would first appear. This article describes
Boost and what it takes to get a library accepted. Note that
opinions and advice expressed here are my own. | do not presume
to speak for any other Boost members.

2. THINKING ABOUT YOUR LIBRARY
Weall have at least afew really great ideas.

2.1 SomeldeasAreReally, Really Hard to

Implement.

Some things are inherently difficult. One recurring idea is a
dimensiona analysis and units library. C++ operator overloading
makes this idea very appealing, so it is easy to get started. There
are many libraries available in this domain and several have been
submitted to Boost. None has yet reached the formal review
stage. This may be because there is wide applicability of such a
package and it is very hard to reach a consensus on requirements
and implementation. Many people need dimensional analysis and



have made and used libraries that suit their needs. Making one
library that covers enough applications may be just too difficult,
S0 no consensus has been reached.

2.2 Consider Making a Smaller Library

As we will see below, making a Boost library and getting it
accepted can be a huge undertaking. Before embarking on the
process, you should consider if you can see it through. It may be
abetter choice to make asmaller library.

Many of the most useful and widely used libraries, such as
STATIC_ASSERT, are small but tricky.

Even a smdll library will entail more work that you might think.
Better to make something small that is really useful rather than
something bigger that does not get finished.

2.3 Start Writing Documentation.
I know that seems backward to alot of people, but bear with me.

e Description —what thislibrary does.
¢ Motivation —why is such alibrary useful ?
e List of features required by such alibrary.

e List of other libraries that do something similar and how
your library is different and or better.

e Toget started, you will have do some research. Be sure
to include the Boost website in your search:

¢ Website. Something like your library may aready bein
Boost. Or perhaps something you can build onis
already there.

e Mailing list. Hereis all the information about previous
proposals and submissions. It is quite possible that
something similar to your library has been submitted in
the past and not been accepted for some reason. If so,
you need to know it. Itisalso possible that the problem
your library isintended to solve has been discussed.

¢ Filessection contains libraries that have not been
formally accepted into Boost, for various reasons.
Some may be in process of development. In many
cases the library is more of an experiment than afull
blown library. The author might have submitted the
library but did not have the time to push it al the way
through the process. In my view thefiles section isan
underappreciated gold mine of useful code. | look
through it al the time when | have asmall sticky
problem. Need to render in integer in roman numerals?
Itisin there!

Your library should leverage facilities already in Boost rather than
re-invent any wheels so you can spend all your time concentrating
on the unique aspects of your package.

At this point, Boost recommends that you query the list to see if
there would be interest in your submission. This is commonly
done. Persondly | do not think such a query is always a great
idea. If you have done your research, you should have a good
idea whether or not your proposed library will be interesting.
When you query the list you risk getting involved in an
opinionated discussion that revolves around a still nebulous idea.
My view is that the real issues do not present themselves until

some code is written, tested and compiled. My (silent) reaction to
such queries is: Hmmm — might be interesting, let’'s see the code
and some documentation.

2.4 Become Familiar with Boost Tools

Start out by installing the current Boost libraries on your
development system. Boosters think thisis easy. And it is, after
you are familiar with it. It means getting paths and environmental
variables setup for the command line version of your favorite
compiler and a couple of other things. Unless things go perfectly
the first time, you will have to investigate how the build system
works which takes some time. For this reason lots of users of
Boost libraries just incorporate Boost source code headers into
their projects. Many of the Boost libraries are supplied as header
files and do not require the building of linking libraries.
However, for alibrary developer you will have to become familiar
with the whole system.

2.4.1 bjam (boost jam)

Boost has its own system from building executables and running
tests. It might best be described as a next generation of UNIX
make. The main component bjam processes a Jamfile which
describes the requirements for buiding libraries, and executables.
Dependencies between header and source files are handled
automatically. Also compiler, library, and platform dependencies
are also handled automatically. Generally, there is little or no
compiler, library, or platform specific information in a Jamfile.
In this way, your library will be built and tested on other
platforms without anyone having to do anything special. Of
course that is the theory. In practice there is usualy a little bit of
effort required to specify small adjustments required for different
environments Without bjam, it would be a huge effort just to test
someone else’'s code — now it is manageable.

bjam is used to build libraries and also run a test suite for each
library. Information on using bjam is spread among several web
pages on the boost site. Perhaps the easiest way to get familiar
with bjam is to use the bjam files for other libraries as models for
your own.

Unfortunately, it is one more thing to learn and at the beginning it
will feel like its slowing you down. In fact, it IS slowing your
down. But the investment in effort to become familiar with it will
be paid back many fold as your library becomes more elaborate
and ported to more platforms.

2.4.2 Documentation

As | write this, most of boost documentation is in HTML files.
This is considered acceptable for new submissions. These files
may be generated by hand or with another tool of your own
choice. To save time | used a skeletal set of HTML files from
boost that provided all the sections, and style information that is
common to boost libraries. | found this very helpful. Boost is
moving towards a new system for documentation, Boost.Book,
which maybe worth investigating.

2.4.3 Boost Test

Fundamental to a library submission is atest suite. The key tool
for building tests is the Boost Test library. This described in the
Boost library documentation in the section “Correctness and
Testing” [5]. Tests are run on separate test servers and produce a
daily test matrix which shows all test failures organized by library
and compiler.



2.4.4 Other Boost Tools

It is really necessary to have reviewed most of boost libraries to
understand what is available already. Boost contains lots of code
to simplify program portability, ensure correctness and implement
commonly required idioms. Code that needlessly includes
functionality already in boost will probably not be accepted. It
takes alittle time to become familiar with all this.

3. CRAFTING YOUR SUBMISSION

Now you are ready to write your code. More likely, you have got
your origina code and you are ready to start making it acceptable
for Boost.

In order for your library to be evauated, others will have to
experiment with it, test it and use it.

If someone wants you to try out their code, they had better make it
as easy as possible for you — correct? You could not spend time
fiddling around with compiler settings, deciphering incomplete, or
unclear documentation or otherwise wasting time. Well, surprise,
no one else can either. Be prepared to submit a self contained
package that “just works”. Given that the Boost community uses
a variety of compilers, libraries and platforms, this challenge
might seem impossible at first glance. Boost tools provide a
solution to this problem, so now you will start modification of
your codeto do it the “Boost way”.

Code, make test, add to Jamfile, debug, add to document,
redesign, re-factor and repeat until done. Soon you should have
the following in your personal copy of the Boost directory tree:

e Codefor your library’ s headers and source files.
e Code for tests and demos

e Jamfilesfor build and test

¢ Documentation for library usage

When crafting your library:
¢ Work to the C++ standard — not to a particular compiler.

e When the compilers you use to test cannot handle the
standard conforming code, make changes to achieve
portability desired. Usefacilities already in boost to
achieve the desired portability.

e Useat severd different compilers. Thiswill increase
the number of people that can/will tryout your library.
All compilers have bugs and quirks. Building your
code with more than one compiler/library helps make
your code more portable and standard conforming.

*  Leverage other Boost libraries to achieve portability and
gain “freg” functionality.

¢ Add asection to your documentation titled “ Rationale”.
Aswriting on your library progresses, you will be
required to make non-obvious design and
implementation decisions. For each of these decisions,
add an explanation to the “Rationale”. Later, wheniitis
asked why you did something a certain way, you will
not waste a lot of time re-discovering your original
reasons.

e Include atutoria with an example program in your
documentation. This should permit an interested party
to see the utility and ease of use of thelibrary in avery
short time. In a sense, the function of this section isto
“sell” the library to a potential user..

. Include reference documentation to catalogue its
features and usage.

e For each library feature, include atest and add it your
Jamfile. Also add an entry to your reference
documentation.

*  Repeat the cycle, adding features until the library is
mature enough to demonstrate its utility, design,
direction and final form. It does not have to be
complete, but it should have functionality that others
can benefit from, including working code,
documentation and tests.

Eventually you should have enough of the library done that it can
be evaluated. The documentation and code might have some
placeholders but it will be clear what you envision as the final
version. Now you are ready to submit to Boost for preliminary
consideration.  Announce your submission on the Boost
developer’s list and make it available to interested parties in one
or more of the following ways:

e Zip, gzip, or tar your submission into one file. Be sure to
retain the Boost compatible directory structure. This
can be uploaded to he Boost files section and/or to your
personal website.

*  Reguest CVS access to the boost-sandbox project and
check it in there.

If all goes well, you should get some feedback on the list within a
couple of days. If you do not get any feedback, try announcing
again as sometimes the list is focused on a heated technical
debate, formal review in progress, new release or something like
that. The Boost community is large so usualy there is someone
interested in just about any topic posted.

Hopefully some people will find your package interesting, useful
and transparent enough to experiment with.

4. DEALING WITH FEEDBACK

Now the fun begins. Hopefully you will get some feedback.
Hopefully at least some of it will be positive. Here is what you
might get.

4.1 I1t's Got Bugs

Well, shame on you. You did not test it exhaustively enough —
thisis abig turn off for users. Think of your own reaction when
you have a problem, find something that purports to solve it, and
it turns out to be more trouble than its worth. You are
disappointed and reluctant to trust the library (and its author)
again. Do not do this to your users or to yourself. Better to have
something useful that has a path to the future than something that
does not work along with a promise about how great it is going to
be.

Maybe it is a misunderstanding — ask the user to run your tests —
or add anew test.



4.2 It'sUseful But It Needs Feature X

Now we are getting somewhere. Someoneis actually trying to use
it. Thisisabig accomplishment. Feature requests comein lots of
flavors.

e Thereisawaytodoit—itisjust not clear fromthe
documentation and examples. Soitisjust a
misunderstanding. Thisisyour cue to add another
section to your documentation with a supporting
example and test.

e ltisdready planned for the future. Very good — they
want more. Acknowledge the request and put it your
list.

e You never considered it, but it isagood idea. Grest,
put it on your list.

¢ You are convinced feature X isnot agood idea. —
explain why thisfeature is not included and not
planned. This may start a discussion thread. If you
already considered this and rejected it, it should already
beinthe “Rationale” section of your documentation.
Eventually it will get sorted out and hopefully a
consensus will be reached. Be sure that the entry in the
Rational e reflects the relevant aspects of the discussion.

4.3 How Dol UsetheLibrary To Do X?

This question is similar to a feature request. It will result in either
a promise to add a new capability, an example or demo with an
attached explanation showing that the capability is there, or a new
entry in the documentation indicating why the capability is not
there.

It is often easier to write a small demo showing how to do
something than it isto explain how to do it. It is much better than
a seemingly endless back and forth on the mailing list. Add the
demo and explanation to your test set and documentation. If you
do not do this, the same question will come up again and again.

4.4 Personal Comments

Boost mailing list discussions are governed by the Boost
Discussion Policy [3]. This policy is designed to make mailing
list discussion as productive as possible and avoid problems
which can plague other mailing lists. Among other things it
proscribes persona attacks and admonishes list members to stay
on the subject. Members on the list use their rea names.
Occasional gentle reminders keep thislist functioning in a product
and professional way.

Of course someone might dip and say “This feature is useless’
rather than “When would | use this feature?’ which is far more
likely to elicit a useful response. Should something like this
happen do not take it personally. Often what seems offensiveisa
communication problem. Remember that the Boost list is aworld
wide community. Sometimes there can be misunderstanding
because of language difficulties. Unless you are in a position to
respond to a poster in his native language, have some patience.
Generdly | like a little humor in posts — but remember that it can
be the source of a misunderstanding and someone can be offended
when there was no such intention.

Often the poster may have a valid point even though he phrases it
in an irksome manner. Just respond to the substantive point and
ignore the rest.

When arguing issues related to your library, stick to the Boost
discussion policy.

The most heated discussions revolve around differing opinions
and hypothetical situations. Often time the best thing is to make a
small test program and get some real facts. That will usualy
resolve things. In any event, the discussion will move to a higher
plane that revolves around interpretation or applicability of real
results of area case rather than speculation based on hypothetical
situations.

4.5 The Next Step

Well, you have your input. Most likely you have a long list of
things to do. Some people find the feedback discouraging; other
people find it motivating. If you are convinced that your library is
on the right track, be prepared to repeat the above procedure
severa times. The last draft of the Serialization library is # 20.
About half of these revisions were posted to Boost and actually
subjected to the process described above. The serialization library
is larger than most and | really was not prepared for this process
the way you will be &fter reading this paper. Hopefully, my
experience qualifies as aworst case scenario.

5. FORMAL REVIEW

Formal review is the heart of the Boost process. It is fiendishly
clever and very effective. It can be summarized as follows:

e Formal review isrequested by submitter

. If the request is seconded by one or more Boosters, a
limited time review period (usually aweek or two) is
scheduled and a review manager is assigned.

e Issuessuch aslibrary design, utility, code quality,
documentation, and others are discussed on the list.

*  During thereview period, interested parties post
recommendations and supporting arguments for
acceptance or rejection of the library into Boost.

e After close of the review period, the review manager
makes the decision as to whether or not the library will
be accepted, and if so, what changes should be made.
His report includes a summary of the issues raised and
his assessment of the consensus.

A particularly intriguing aspect of this process (to me) was the
lack of pretense to any sort of democratic idea. Although reviews
often “Vote" for acceptance or regjection, it is not a question of
number of votes. The review manager makes the fina decision
after reviewing all the posted comments. It is much more ekinto a
court decision rather than an election.

The fact that this is a formal review will motivate a number of
people who did not have time to review the library before to now
teke a closer look. Having updated your library in accordance
with your preliminary feedback will pay big dividends here. Less
time will be spent on mostly settled issues so you will be able to
spend time on any new things that pop up.

The formal review process itself can be pretty intense for the
library submitter. The limited time frame available focuses



everyone's attention on the review. Many new points will be
brought up and you will have to consider them all in a short time.
The process sounds more suspenseful than it realy is. By the
time this is done, it is usually obvious whether or not the
submission will be accepted.

If your library is not accepted, the review manager’s report will
detail the reasons why aong with the final decision “The X
library is not accepted into Boost at thistime”. Of course such a
decision is a huge disappointment for the submitter. Though it
has happened that a library which was deemed unacceptable was
reviewed a second time, it has happened only once. The Boost
Seridlization library is the holder of that dubious distinction. A
better strategy isto be ready the first time by following the advice
given here.

6. SO YOU THINK YOU'RE DONE?

If your library is accepted, it is usually subject to some conditions.
Boost does not require the library to be totally complete to be
accepted. Accepting only libraries that are ready for release
would place an unreasonable burden upon potential contributors.
Your next task is to make all changes that the review manager has
determined are necessary. This can take quite awhile.

Once dl the changes are made, you can concentrate on other
portability to other platforms. Boost emphasizes that support for
older non-conforming compilers is not a requirement. \Whether
you choose to implement conformance workarounds may depend
on the nature of your library. If your library is the next greatest
template metaprogamming wizardry, it may not make sense to try
to support older compilers. If it isamore prosaic application such
as a TCP/IP stack, it might be more appropriate to support a wider
range of compilers. Itisup to you.

Buiding and testing with other compilers, libraries and platforms
can be more difficult that one might think. First of dl, if you have
made it this far, your library may have lot more functionality and
generdity than it started with. You will start to gain a better
appreciation for the subtleties of the C++ language and the
variations among implementations of the language. Eventualy
you will add your code to the main Boost CVS tree and start
testing on other platforms. Boost runs al the tests for al the
libraries approximately every 24 hours. The slow turn-around can
be infuriating. Fortunately, friendly Booster members interested
in your library will often lend a hand with the compilers, libraries
and platforms that they use.

Eventually, most of the boxes in the test/compiler test matrix
show the tests passing. A few will not pass because one or more
compilers or standard libraries cannot support a particular feature
that your library requires. (e.g., wide character 1/0). Some
compiler bugs just cannot be worked around, so some feature of
your library may not be usable with a particular compiler. This
matrix will help library users to determine which features are
availablein their development environment.

Is this the end? Not really. Libraries are constantly tested and
new problems emerge as compilers are upgraded. Users report
ever more bugs or ambiguities in documentation. Users post
suggestions for enhancements. Depending on the size of the

library and how widely used it is, it can take a while before things
really taper off.

7. ISIT REALLY WORTH IT?

Submitting a library to Boost and seeing it through can teke a lot
of time. It can be frustrating and stressful as well. And for al
this, there is a real possibility that the effort will end in failure.
The question has to be asked — is it worth the effort?

Regardiess of whether or not your library is accepted, you will
benefit from having gone through it.

You will find that there is a lot more to C++ than you thought
there was. As a library writer you will likely become a lot more
familiar with the details of templates, STL, streams, etc. than you
do as an applications devel oper.

You will be exposed to better methodology. The Zen of Boost
might be summarized as

. Design, code, tests, and documentation are developed in
parallel rather than one after the other.

e Development is incremental and iterative. During the
course of development, one always has a complete
working package.

e Subject code, tests, and documentation to constant
review and criticism of one's peers

*  Factor out common codeinto libraries of orthogonal
functionality.

e Test each library and each library feature independently.
e Document libraries separately.

e Composing programs from working, tested, documented
components increases the chances of producing flexible,
reliable programs in the shortest time.

Most organizations believe that they are using the best practicesto
produce software. Most of these organizations are wrong. Going
through this process — even for a smal library — will make it
apparent what it takes to do good work and why more of it is not
being done.

You will spend time interacting with smart, mostly agreeable
people who really love what you — and they — do.

Isthis “worth it”? Y ou decide.
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Abstract

A Domain-Specific Embedded Language (DSEL) is a miniature
language-within-a-language for solving problems in a ipaldr
domain. This paper presents techniques for increasing ahem
and flexibility of DSELs in C++ by unifying two complemen-
tary designs: early-bound (compile-time) and late-boundt{me).
Late-bound DSELSs often have string-based interfaces, adseex-
pression templates are usually the tool of choice for elaolynd
DSELs. xpressive, a new regular expression library, fusess two
approaches. This fusion, providing both a runtime and a demp
time interface, has advantages over either approach altreepre-

1. How to structure the code to get the performance benefits of
early binding while allowing the flexibility of late binding

2. How to avoid duplication of implementation.
These issues and others are addressed by xpressive, a new reg
lar expression template library. xpressive allows progrems to

write regular expressions either as strings, expressiopltes, or
a combination of both.

2 Advantages of a Dual-Mode I nterface

sented unified design uses the same back end for both styles ofl he regular expression library recently accepted into fiieeth Re-

binding, maximizing code reuse without sacrificing perfanoe.
This paper covers the design of xpressive and the advantégfss
dual-mode approach.

1 Introduction

Domain-Specific Embedded Languages raise the level ofabstr
tion, allowing programmers to express solutions in a way tiad
urally suits the domain in which they are working. Examples i
clude Blitz++ [22] for scientific computing, and Boost.Spj8] for
parser generation. These two libraries use a technique rkraew
expression templatg23] to define an embedded language within
C++. There are advantages to this approach. In particidpres-
sion template-based DSELSs are:

1. Type safe: the rules for legal statements in the embeduted |
guage are checked by the compiler.

2. Efficient: by delaying evaluation of complicated expiess
until the full expression is available, expression tengsdat
make the job of an optimizing compiler easier.

In a different approach to DSELs, one writes statements én th
domain-specific language as strings to be parsed and iatecpat
runtime. This approach also has advantages. In particsttamg-
based DSELs are:

1. Unconstrained: they need not satisfy the rules for legat C
expressions.

2. Dynamic: statements in the domain-specific language ean b
specified at runtime.

A library that provides both a string-based and an exprassio
template-based interface has the potential to offer thefiierof
both. The design of such a library presents significant impleta-
tion challenges:
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port 1 [18] provides the following interface for construngia regu-
lar expression object:

/I match a date of the form 09/30/2005
regex date = "\d\d?A\d\d?A\d\d(?:\\d\d)?";

Although more verbose, expression templates guard againtix
errors such as unbalanced parentheses by moving theitidatez
compile-time. For example, when written as an expressimplate
using xpressive, the regular expression above would |d@X li

sregex date
= d>1d>»>7T /I match month
d>1d>7r Il match day
_d >> _d > I(d > _d); /I match year

In this regex, the primitived serves the same purpose"&d’ in
TR1regex; thatis, it matches a digit character, and theplngical
not operator marks a sub-expression as optional.

Programmers can also create named regex objects and teeat th
as aliases, embedding them in other regular expressioris,thas
following:

Il Aline in a log file is a date followed by
Il a space, and everything up to the newline.
sregex log = date >> ' ' >> +7set[\n’];

This regex reuses thaate regex defined above.

Another advantage is that expression templates can calt Gth+
code. Consider this regex, which only matches valid dates:

sregex date
= (d >> L_d)[if_is_month()] >> I
(d >> Ld)if_is_day)] >> T
(d > _d > I(d > _d)if_is_year()];



This regex uses the programmer-defined predicatess _-
month() , if _is _day() andif _is _year() to enforce semantic
constraints on the regular expression.

xpressive also accepts regular expressions as stringsoiBy do,
xpressive preserves the benefits of a late-bound interfagear-
ticular, programmers can use the ECMAScript standard regex
tax [14], and programs can process arbitrary regular exjmes at
runtime.

A regex can be largely fixed at compile-time while part of ies b
havior can be customized at runtime by changing an embedded d
namic regex. Since matching a date is locale-dependenteduar
expression required to match a date might be written asregsind
put in a resource file for easy localization, as in:

Il A'line in a log file is a date followed by

/I a space, and everything up to the newline.
sregex date = sregex::compile(get_date_pattern());
sregex log = date >> ' ' >> +7set[\n"];

In this caseget _date _pattern()  reads a localized string from a
resource or initialization file. It is “compiled” into a refgw expres-
sion that is then embedded in the log file regular expression.

3 Design and Implementation

The core of xpressive is modular, connecting its componahts
compile-time to use static dispatch, or at runtime to useadyo
dispatch. Statically-bound heterogeneous data strictieand in
for their dynamically-bound counterparts, and iterativetime al-
gorithms have recursive variants that operate on the hggaemus
data structures.

xpressive avoids code duplication by isolating the corection-
ality in a Matcher concept and defining two Scaffolds: one for
binding sequences of Matchers statically and the other rdisna
cally. The decoupling of the Matcher and Scaffold conceptsiits
the Matchers to be neutral regarding the binding, whetheadhc

or static [6]. This separation of concerns enables the catem
matching functionality to be shared by the two Scaffolds.

3.1 Concepts

Matchers accept a match context (which, among other thougs,
tains the iterators designating the sequence being sefrahd a
tail parser. The use of a tail parser to implement exhaubiaek-
tracking recursive descent is described in [12]. The Matcioa-
cept looks like this:

template<class X, class lterator, class Tail>
concept Matcher

where Bidirectionallterator<Iterator>,
Scaffold<Tail, lterator>;

bool X::match(context<Iterator> &,

Tail const &) const;
h

Scaffolds control the policy by which Matchers are boundréh
fore, they do not need to be passed a tail parser as a Matcegr do

1The syntax used in this paper for concept definitions congorm
to the proposal to add concepts to C++[20].
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Scaffolds generally compose a Matcher and a tail parserctwiti
self satisfies the Scaffold concept), and it passes the daslep to
the Matcher. The Scaffold concept is defined (in part) below:

template<class X, class Iterator>
concept Scaffold

where Bidirectionallterator<Iterator>;

bool X::match(context<Iterator> &) const;
..

I3

any _matcher is an example of a concrete type that satisfies the
Matcher concept. It matches any one character, liké'themeta-
character in Perl.

struct any_matcher {
template<class Iterator, class Tail>
bool match(context<Iterator> & ctx,
Tail const & tail) const {
if(ctx.current ctx.end)
return false;
++ctx.current;
if(tail.match(ctx))
return true;
--ctx.current;
return false;

}
h

In this code, ctx.current is an iterator pointing to the cur-
rent position in the sequence, aoi.end is the end of the se-
quence. All concrete Matchers are implemented similathgyt
evaluate their match condition, update the match contexgkie
tail. match(ctx) and, if the tail parser fails, backs out changes to
the match context. As we will see, the calltad.match(ctx)

can be dispatched either statically or dynamically.

3.2 Late-Binding with the Dynamic Scaffold

The dynamic Scaffold is built like a singly-linked list of Ntders,

where each Matcher is encapsulated behind a runtime pophitor
interface. This is essentially a variation of the Interpredesign

pattern [11]. The dynamic Scaffold is implemented in twatpaas

below:

template<class Iterator>
struct matchable {
virtual “matchable() {}
virtual bool match(context<Iterator> &)
const = 0;
I

template<class Matcher, class Iterator>

struct dynamic_scaffold : matchable<Iterator> {
Matcher head;
matchable<lterator> const * tail;

bool match(context<Iterator> & ctx) const {
return head.match(ctx, *tail);
}

..



The parameteMatcher to thedynamic _scaffold  template is as-
sumed to satisfy the Matcher concept. As such, it hastah()
member function that acceptscantext<> and a tail parser. In
this case, the tail parser passed to the Matcher nmtehable<

Iterator > , which satisfies the Scaffold concept. Looking back
at the implementation oény_matcher:match() , we can see
that when it is invoked from aynamic _scaffold , the call to

tail. natch(ctx) will be dispatched dynamically.

3.3 Early-Binding with the Static Scaffold

The static Scaffold is also built like a singly-linked lisxcept that
it is heterogeneous and statically-bound [5]. Its type Isiudated
at compile-time from the expression template. The stataffSicl

is implemented as follows:

template<class Matcher, class Tail>
struct static_scaffold {

Matcher head;

Tail tail;

template<class Iterator>
bool match(context<lIterator> & ctx) const {
return head.match(ctx, tail);

}
..
3
The only difference between thetatic _scaffold and the
dynamic _scaffold is that thestatic _scaffold  knows the ex-

act type of the tail parser. Looking again at the impleméonat
of any _matcher::match() , we can see that when it is invoked
from astatic _scaffold , the call totail.match(ctx) will be
dispatched statically.

3.4 Handling Branches and L oops

The picture painted so far is obviously simplistic. A singjlyked
list of Matchers is only sufficient for handling regular egpsions
that do not have branches (alternation) and loops (quaattiit,
such as the Kleene star [13]). Loops introduce cycles intadata
structure. It turns out that dealing with cycles is one of thest
challenging problems when moving from a runtime polymocphi
data structure to a statically-bound, heterogeneous datetise.
In the compile-time world, such cyclic data structures leady-
cles in the type system, which are forbidden. (Considerhbeny
infinite regress problem of trying to declareste::pair<First,
Second> whereSecond is a pointer to the wholstd::pair ~ struc-
ture.) xpressive uses a general technique for breakingsyclthe
type system while preserving the cyclic flow of control. Tkeh-
nique, described below, uses a form of type erasure [19]dbes
not incur the performance overhead of an indirection.

Consider the static regular expressigfrexpr ), which matches
expr one or more times, whexpr is some regular expression.
A simple approach might be to terminatepr with a special loop-
end Matcher which, when wrapped irstatic _scaffold , expr
can invoke as a tail parser. This loop-end Matcher would need
store a pointer texpr so it can jump back to the start of the loop.
We might naively implemeribop _end _matcher as follows:

/I BUGBUG this doesn't work! Why?

template<class Loop>
struct loop_end_matcher {
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Loop const *loop; // ptr to loop top

template<class Iterator, class Tail>

bool match(context<Iterator> & ctx,
Tail const & tail ) const {
if(loop->match(ctx))

return true;

return tail. match(ctx);

}

2

Unfortunately, this doesn’t work. The problem becomes obsi
once we try to write down the type of the Scaffold for the regex

)

static_scaffold<
any_matcher,
static_scaffold<
loop_end_matcher< /* What goes here? */ >
..

loop _end_matcher needs to store a pointer to the top of the loop,
but its type depends on the type of thep _end_matcher —a cycle
in the type system! This naive design cannot be made to work.

We notice that we can break the cycle if we move the param-
eterization from the loop-end Matchertype to the Matcher’s
match() member function. Instead of storing thwp pointer

as a data membetpop _end_matcher:: match() can accept
the pointer as a parameter, where its type will be deduceds Th
neatly side-steps the infinite regress problem of having ée d
clare a self-referential type. In the general case, we woeled

a stack of such back-pointers to handle nested repeats such a
+(+( expr)) . For dynamically-bound regexes, sal::stack<
matchable< lterator > const *> would serve, and for static
regexes, the stack would be heterogeneous and staticalhdbdn
addition, rather than adding an extra parameter to the Math
match() function, the stack of back-pointers could be bound to-
gether with the tail parser.

Although theoretically sound, this approach hardly meetsre-
quirements for a zero-overhead solution. Certainly, naémimg

a std::stack<> in the dynamic case will slow things down, and
even in the static case, a heterogeneous stack of baclepoimil
take up valuable real estate on the program stack. We nedatid hy
approach.

It is only by separating the runtime data (the value of thenjaw)
from the compile-time data (the pointer’s type) that we calves
this problem efficiently. The values of the back-pointerg ar
stripped from the stack, which now becomes no more than a type
list [3]. The typelist is used to decorate the type of the pailser,
which gets passed to the Matchers in the usual way. The values
of the pointers are stored in a type-erased form within theches
that need them; wid* is sufficient. Essentially, itis as if we broke
the cycle by parameterizinigop _end_matcher defined above on
void instead of on the real type of the loop. To call through a
back-pointer, a Matcher casts itsid* to the type at the head of
the typelist passed in, completing the cycle just in time] ealls
through it. The result is a general, zero- overhead mecimatos
preserve the cyclic flow of control in a data structure thatyf the
type system'’s perspective, is acyclic.



3.5 Maintaining the Typelist

Expressing our solution in code is straightforward. Sineswill
will be maintaining a stack of types during matching, we maxst
tend the Scaffold concept with stack operations. Our nevif&da
concept looks like this:

template<class X, class Iterator>
concept Scaffold {
where Bidirectionallterator<Iterator>;

bool X:match(context<Iterator> &) const;

template<class Top>
where { Scaffold<Top, Iterator> }
bool X:push_match(context<Iterator> &) const;

bool X:pop_match(context<Iterator> &,
void const *) const;

bool X::top_match(context<Iterator> &,
void const *) const;

bool X::skip_match(context<Iterator> &) const;

h
The semantics of the new member functions are defined below:

push_mat ch() : PushTop onto the head of the typelist and in-
vokematch() on *this

pop-nat ch(): LetTop be the type at the head of the typelist and
top be the result of casting thweid const*  argument tdop
const * . RemoveTop from the head of the typelist, and call
match() ontop .

t op_mat ch() : LetTop be the type at the head of the typelist and
top be the result of casting thweid const*  argument tdop
const * . Callmatch() ontop , leavingTop at the head of the
typelist.

ski p_mat ch() : Discard the type at the head of the typelist and
call match() on*this

We show that all branching and looping can be implemented in
terms of these four primitive operations with zero additiloover-
head in both the static and dynamic dispatch scenarios.

The implementation of these primitives in the dynamic dispa
scenario is simplicity itself. Thenatchable<> template we saw
earlier can implement these functionssitu, as follows:

template<class lterator>
struct matchable {
virtual “matchable() {}
virtual bool match(context<lterator> &)
const = 0;

template<typename Top>
bool push_match(context<Iterator> & ctx)
const {
BOOST_MPL_ASSERT((
trl:is_same<Top, matchable<iterator> >));
return this->match(ctx);
}
bool pop_match(context<Iterator> &ctx,
void const *top) const {
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return static_cast<matchable<Iterator>
const *>(top)->match(ctx);

bool top_match(context<lterator> & ctx,
void const *top) const {
return static_cast<matchable<Iterator>
const *>(top)->match(ctx);

bool skip_match(context<Iterator> & ctx)
const {
return this->match(ctx);
}
3

In the dynamic dispatch scenario, all the back-pointerkhaile ex-
actly the same typematchable<lterator> const * . Therefore,
a typelist is totally superfluous and is eliminated. We carifye
at compile time that no type besidestchable< Iterator > is
pushed on the stack using a static assertiqrush _match() . (The
flavor of static assertion used above is from the Boost MPL) [2]

Things are more complicated for tistatic _scaffold Imple-
menting the Scaffold concept in a statically-bound datacstire
requires a helper class, callstdcked _scaffold . Conceptually, a
stacked _scaffold is 2-tuple consisting of a tail parser and a type.
The type represents the head of the typelist, and the takpaan
be either astatic  _scaffold  or astacked _scaffold

Recall that astatic _scaffold  has a Matcher sub-object called
head and a tail parser calledil . Whenpush _match<Top>() is
called on astatic _scaffold , it bindstail andTop into a tem-
porarystacked _scaffold  object and passes it as the tail parser to
head.match() . On compilers that implement the Empty Base Op-
timization (EBO), we can play a small trick with inheritanaed
static _cast to avoid even creating the temporary object, which
saves valuable program stack spgacéhe code in Appendix A
shows howstatic _scaffold  and stacked _scaffold  work to-
gether to satisfy the Scaffold concept with zero runtimerlogad.

3.6 Turing Completeness

Loosely speaking, a programming language is Turing coraplét

can do sequence, branch and repetition [25]. Therefores Blvow
that the Scaffold concept is sufficient to implement theseetop-
erations, we have shown that it can be used to perform any-calc
lation. It is trivial to show that the Scaffold supports seqcing;
callingmatch() on a Scaffold causes execution to be passed in turn
to the Scaffold’s tail parser, and so on until the end of tlripisace

is reached. Branching and repetition are more interesting.

Consider the regular expressigab)c , which matches or b,
followed by c, wherea, b, andc are themselves regular expres-
sions. Figure 1 shows how we can represent this structuhetingt
Matcher and Scaffold concepts. The arrows represent peitde
the polymorphic basenatchable< Iterator > when bound dy-
namically, and aggregation when bound statically. Thearggles
represent special Matchers that control the flow of exenufitere

is analternate  _matcher which points to or aggregates the Scaf-
folds representing the regular expressiarsdb. Botha andb are

2We makestacked _scaffold  inherit from the tail parser it
wraps. Sincestacked _scaffold is empty otherwise, it will be
layout-compatible with its tail parser if the compiler daeBO, so
a cast is sufficient.
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Figure 1. Data structure representing the regular expression
(al b)c.

alternate_end_matcher

alternate_end matcher

terminated with aralternate  _end_matcher .

ceeds as follows:

Flow control pro-

1. alternate  _matcher is invoked withc as a tail parser.

2. alternate  _matcher callss_a.push _match<C>(..)  where
s_ais the Scaffold representing the regular expresaj@ndC
is the type of the Scaffold representing the regular expyass
¢. This causes to execute and pushes the typ& the head
of the typelist.

execution reaches #kernate _end .-
to c. alternate _end_-

. If a succeeds,
matcher , which stores avoid*
matcher invokespop _match(...) on the tail parser, passing
thevoid* . This causes theoid* to be cast to &*, removes
Cfrom the front of the typelist, and executes

. If a fails, or if the failure ofc causesa to backtrack,
alternate  _matcher callss_b.push _match<C>(...)  where
s_b is the Scaffold representing the regular expresbicand
the process repeats.

Essentially, alternate  _matcher is an n-way branch. The
push _match() and pop_match() primitive operations give us a
convenient way to express continuous control flow acrossaodk
tinuous data structure.

Looping is handled in a way similar to branching. We have al-
ready suggested the existence of a special loop-end Matutier
will also need a loop-begin Matcher. When repeating a regxa
pression one or more times, the Scaffold representing ibakb
ended with the loop-begin and loop-end Matchers. The |cegirb
Matcher simply executdail.push  _match< Tail (ctx) to exe-
cute its tail parser and push its type onto the typelist. Bogiend
Matcher will try to calltail.top ~ _match(ctx, pv) to jump back
to the start of the loop (wheng is avoid* pointing totail ). If
that returns false, it will returtail.skip _match(ctx)  to break
out of the loop and pass execution on to the rest of the regular
pression. The code is below:

struct loop_matcher {
template<class lterator, class Tail>
bool match(context<Iterator> & ctx,
Tail const & tail) const {
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return tail.template push_match<Tail>(ctx);

}
h

struct loop_end_matcher {
void const * pv; // points to top of loop

template<class lterator, class Tail>
bool match(context<Iterator> & ctx,
Tail const & tail) const {
if(tail.top_match(ctx, pv))
return true;
return tail.skip_match(ctx);

}
h

We have not yet succeeded in building a Kleene star. Therigopi
mechanism described above must execute the loop body &t leas
once, and the Kleene star repeats an expregsimor more times.
However, we can build a Kleene star out of tbep _matcher and
the alternate  _matcher already described. We take the regex to
repeat, book-ended with begin- and end-loop Matchers. Treen
usealternate _matcher to make it alternate with ampsilon _-
matcher , which is a null-transition. In other words, we transform
*(expr) to(+( expr) | epsilon) . The epsilon branch gives us
a way to skip over the loop body entirely if it fails to matcHesst
once.

Since we can express sequencing, branching and repetitiothe
Scaffold and Matcher concepts, it follows that they can hedue
express domain-specific embedded languages within C++atkat
Turing complete, and which can be bound statically or dycattyi
in a way that incurs zero extra runtime overhead.

4 Empirical Results

We analyze the size and speed trade-offs of static and dgrmag
ular expressions. As static regular expressions have havfunc-
tion calls or other indirections, we expect them to perforattdyr
than their interpreted dynamic brethren. This assumes aitem
smart enough to optimize the code generated by the expressio
plate. It also fails to take cache and locality effects intoaunt. As
always, there is no substitute for an empirical test.

Performance Benchmark Method

Appendix 2 shows the comparative performance of static and d
namic xpressive. The test is broken into two scenarios: tshor
matches and long searches. The regexes for the short matehes
taken from The Regular Expression Library [1], a repositofy
practical, real-world regexes, so the hope is that the teate fairly
representative. For the long searches, the time to find atihma in

a long English test is measured. The text is the complete svafrk
Mark Twain [21], and the patterns are taken from the perforcea
suite of the Boost.Regex library [17]. To account for cacffiects,
each test is run ten times in succession, and the smallestisim
reported for each.

Performance Benchmark Results

The results of the performance test are that for Visual CH% 7.
static regexes are consistently faster than dynamic, by di3%v-
erage. On GCC 4.0, results were mixed, with dynamic xpressiv
occasionally and inexplicably out-performing static xqwige. We



have no satisfactory explanation for these outlying datatpobut
we note that on the whole, static xpressive performs better.

We also analyze the effect of static regexes on executatde e
might expect executable size to drop when using expression t
plates because code is only generated for the DSEL featha¢s t
are actually used. In contrast, a string-based DSEL, sindeds

Framework [8], which is an EBNF parser generator. An early ve
sion of the library exclusively used a string-based intefdut later
versions switched to using an expression template interfimel de
Guzman, Spirit's author, reports that users occasionakyfar an
optional string-based interface, which de Guzman has deresil
adding.

not know at compile time which features are used, must gener- Another domain that might benefit from a dual-mode DSEL is re-

ate code for all of them. In addition, when not using the gtrin
based interface, the parser which turns a string into a reggegt
needed. However, even though we only pay for the featurésatba
used, with expression templates we must pay for them regiigate
For example, using a look-ahead assertion in three differen-
texts will generate the look-ahead code three times witiesgion
templates, but only once for a string-based DSEL. Also, tetéam
programming required to manipulate the expression temddkies
up space in the executable.

Executable Size Benchmark Method

Several different regular expressions are taken from ThguRke
Expression Library [1] and translated into static regexXdwey are

lational query. We imagine a library that accepts SQL quseae
strings or as expression templates. When applied to a opéiti
database, an expression template query could make it gintple
bind the results of queries to in-process data. The exessm-
plate queries could also be applied to strongly-typed imaory
data, such as STL container-like tables. In that case, thetseof
SELECTandFROMperations could themselves be strongly typed. In
this regard, it would be like the Relational Template Lilgr§24].
Such a dual-mode relational query library might also haeesthil-
ity to translate an expression template query into an inteliate
form (possibly string-based) for remote execution by ati@tal
database.

Finally, we note the current work going on by Joel de Guzman on

added one at a time to an otherwise empty source file. With each@ new library called Rave [9], which in his words is "a lambda

additional static regex, the file is compiled in release cumé-
tion, and the size of the resulting executable is noted. Hmees
is done for dynamic regexes. The results are tabulated ireAghig
3. Correlating the number of static regexes to executalzke isi
naive, since complicated regexes are likely to generate rage-
cutable code than simple ones. As a result, the table in Afipen
3 correlates expression template complexity versus eablausize,
where the expression template complexity is defined as thoau
of overloaded operators used in the expression template.

Executable Size Benchmark Results

We find that the executable size scales roughly linearly with
total expression template complexity. For dynamic regetkesex-
ecutable size is unsurprisingly independent of the numbezgu-

lar expressions used. For programs with low expression l&mp
complexity, the executable size with static regexes isidenably
smaller than with dynamic. For example, a program with omlg o
static regex with a complexity of 12 results in a 57Kb exeblga
whereas the equivalent program using a dynamic regex is 156K
The break-even point is at a complexity of around 150. Beyond
that, using dynamic regexes will yield smaller executables

4.1 Recommendations

The above results can be summarized as follows: when optimiz
ing for speed, prefer static regexes. If optimizing for sitake
into consideration the complexity of the regular expressidf the
number of expression template operators is below a cetia@sh-
old (empirically determined to be around 150), use statiexes.
As complexity grows beyond that threshold, consider svinigito
dynamic regexes. Once the "interpreter tax” has been pditi; a
tional dynamic regexes are free. For applications that usege
number of regexes, a good strategy for managing executige s
would be to use dynamic regexes for the majority, and uséstat
regexes only where performance is critical.

5 Other Applications

Dual-mode DSEL interfaces have applications outside thmeaio
of regular expressions. An interesting data point is theitSpéarser
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interpreter, which amounts to a late-bound DSEL for Phag&nix
Phoenix [7] is an expression template-based lambda abietvdor
C++, which is currently a part of Spirit.

6 Reated Work

The idea of making the binding between components either dy-
namic or static is not new. Czarnecki and Eisenecker destilv

to use parameterized inheritance to make a class fullycathti
bound, fully dynamically-bound, or a combination of botH.[6
xpressive uses a variation of this approach.

The idea of building DSLs out of pluggable components is also
not new. Tools for building such mini-languages abound. tMar
Fowler provides an excellent and informative overview & sate

of the art in what he calls "language workbenches” in [10].

A variation of the cyclic type dependency problem is addrdds/
the Barton-Nackman trick [4]. A technigue using templatepéate
parameters to break mutual dependencies between clasktesnp
in certain circumstances is described in [16]. Howevertheei
technique fully addresses the cyclic type dependency sssithe
sort that can arise in generative programming.

The Boost Lambda Library [15] is another example of an expres
sion template-based DSEL that is Turing-complete. It piesia
lambda abstraction for C++ with sequencing, branching ang-
ing constructs, as well as variable assignment. This foidaes not
have the same problem with cyclic type dependencies beduse
looping constructs are iterative instead of recursive db wpres-
sive. The recursion in xpressive is to satisfy the exhaediiack-
tracking requirement, which is implemented with recurslescent
and tail parsers.

The Phoenix library [7] is another Turing-complete lambHsteac-

tion for C++ which uses expression templates, but unlikeBibest
Lambda Library, Phoenix allows recursion. Phoenix’s sotufor

the cyclic type dependency problem is similar to xpressivedw-
ever, it is not zero-overhead. Rather than storing typsest@oint-

ers as data members, the pointers are passed as paramehsis so
types can be deduced. This consumes space on the progrdn stac



We speculate that the extra argument passing may also censum [16] L. Kettner. Comp 290-001: Algorithm library design: dtare

clock cycles and increase register pressure.

7 Conclusions

Domain-specific embedded languages are a powerful abstract
tool. By fusing the two common approaches to DSELs in C++,
late-bound and early-bound, we can achieve the benefits tof bo
without sacrificing performance or flexibility. We presentgle-
mentation techniques for developing dual-mode DSEL libsathat
maximize code reuse, and a general technique for breakiclgscy
in the type system for cyclic heterogeneous data structufée
concepts used by xpressive allow for Turing complete DSHLS i
C++ that allow either binding style with no extra runtime dwead.
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Implementation of the Static Scaffold

The implementation oftatic  _scaffold  is shown below. It shows
how to achieve statically-bound cyclic control flow in a hretge-
neous data structure with zero runtime overhead. This im@fta-
tion assumes the empty-base optimization as an added aption
to conserve program stack.

Sincestatic _scaffold  represents the condition when no types
have been pushed onto the typelist, it need not implement
pop_match() , top _match() , or skip _match() . Calling these
functions on astatic _scaffold  would be invalid in the same
way that callingpop() on an emptystd::stack<> is invalid.
Also notice thatstacked _scaffold  does not need to imple-
ment push _match() since it will inherit a working version from
static  _scaffold

T
Il class: stacked_scaffold
Il purpose: a 2-tuple of a tail parser and a type
Il requires: Top is Scaffold, Tail is Scaffold
Il satisfies: Scaffold concept
Il
template<class Top, class Tail>
struct stacked_scaffold : Tail {
template<class Iterator>
bool match(context<lterator> & ctx) const {
return Tail::template push_match<Top>(ctx);

template<class Iterator>
bool top_match(context<lterator> & ctx,
void const * top) const {
return static_cast<Top const *>(top)->
template push_match<Top>(ctx);



template<class Iterator>
bool pop_match(context<lterator> & ctx,
void const * top) const {
return static_cast<Top const *>(top)->
match(ctx);

template<class Iterator>
bool skip_match(context<lterator> & ctx) const{
return Top::skip_impl(
static_cast<Tail const &>(*this), ctx);
}

template<class Talil, class Iterator>
static bool skip_impl(Tail const & tail,
context<lterator> & ctx) {
return tail.template push_match<Top>(ctx);
}
I3

T
Il function: decorate_scaffold
/I purpose: decorates the type of a tail parser
/I with a type representing the top of the
Il scaffold stack
/I requires: Tail is a Scaffold
/I assumes: the empty-base optimization
Il
template<class Top, class Tail>
inline stacked_scaffold<Top, Tail> const &
decorate_scaffold(Tail const & tail) {
return static_cast<

stacked_scaffold<Top, Tail> const &>(tail);

}

I
Il class: static_scaffold
Il purpose: binds a Matcher to a tail parser
/I requires: Tail is a Scaffold
Il satisfies: Scaffold concept (together with
/I stacked_scaffold)
Il
template<class Matcher, class Tail>
struct static_scaffold {
Matcher head:;
Tail talil;

template<class lterator>
bool match(context<Iterator> & ctx) const {
return head.match(ctx, tail);

template<class Top, class Iterator>
bool push_match(context<lterator> & ctx) const{
return head.match(ctx,
decorate_scaffold<Top>(talil));
}

template<class Tail, class Iterator>
static bool skip_impl(Tail const & tail,
context<lterator> & ctx) {
return tail. match(ctx);
}
I3

112

B Performance Benchmark

We analyze the relative performance of static and dynamies¢p
sive. The objective is to measure the cost of interpretdtiornly-
namically bound regular expressions, and determine if xtra ef-
fort of authoring static regular expressions is worthwhile

The tests were carried out on two different compiler/platf@om-
binations: Microsoft Visual C++ 7.1 on Windows and GCC 4.0
on Linux. Two different scenarios are tested: (1) matchirsipart
string against a regular expression, and (2) finding all magesub-
strings in a long Engligh text. The text is the complete wooks
Mark Twain [21], which is approximately 15Mb long. For alkts,
the search is repeated in a loop until at least 0.5s has elapbe
time to complete the search is taken to be the total time ethgs
vided by the number of times the loop was executed. This ggoce
is repeated 10 times and the lowest number is reported. Badh t
of results has the actual time for both static and dynamiesgive.

It also has the normalized time, which is the actual timeddidi by
whichever of the two times was lower. (Therefore, the bestad
ized time is 1.)

Table 1 shows the results of performing various short matcise
ing the Visual C++ compiler. The regular expressions arefem
online repository of useful regexes [1], so we have reasdoeto
lieve they are fairly representative of how people actuadlg reg-
ular expressions. In this test, we can clearly see statiesgire
consistently outperforming dynamic xpressive. It is intpat to
note that for both static and dynamix xpressive, the codelgxe
ing is the same, the only difference being whether the Mascare
bound statically or dynamically. Therefore, the perforeediffer-
ence is a measure of the virtual function call overhead,ihdising
opportunities and worse locality of reference.

Table 2 shows the results of performing repeated searctemirg

English text. In several cases, dynamic xpressive is jufdstsas
static xpressive. For those regexes, xpressive has fourgpt@n
mization that results in an algorithmic improvement. Thersgth

of the optimization drowns out the comparativly small difiece

between static and dynamic dispatch. In the absense ofragve
timizations, however, static xpressive is again fasten ghaamic,

by as much as 30%.

Tables 3 and 4 show the results of the same tests as 1 and 2, run
this time on Linux after compiling with GCC 4.0. The resulte a
quite erratic. Although static xpressive usually beatsadyit by

a comfortable margin, Table 3 holds a few surprises. For some
patterns, when matching against short strings, dynamiessire
executes faster by as much as 30%. We have no satisfactde exp
nation for these surprising results. Possible explinatioclude a
clever compiler optimization, opportunistic cache eféectr a bug

in xpressive, the test harness or the compiler. Furthestigation

is required.

C Executable Size Benchmark

Table 5 compares executable size for programs using statidy
namic regular expressions. The first column is the numbetatits
regexes in the program. The second column is the total esipres
template complexity of the program, where expression tatepl
complexity is the number of overloaded operators used. fine t
column is the size of the resulting executable in bytes. Dloeth
column is the size of the same program using dynamic regéxes.
compiler used is Visual C++ 7.1. The executable is compiteet+



lease configuration.

We can see from Table 5 that for programs that use regulaesxpr
sions sparingly, using static regexes can greatly save=spdlce re-
sulting executable. However, the executable size growghiguin-
early with the number and complexity of the static regexanu-
ally, at an expression template complexity of about 150resttold

is passed and dynamic xpressive yields smaller executables
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Table 1. Performance of Short Matcheson Visual C++ 7.1

Static xpres- | Dynamic —
sive Xpressive Text Regular Expression

1 (3.2e-007s)

1.37 (4.4e-007s)

100- thisis aTine of fip response
which contains a message string

(0914 [9)(9$

1(6.46-007s) | 1.12 (7.156-007s)] 1234-5678-1234-456 (R @) BITdgt] (347
(@zA-Z09 A H@(09] I3 N0

1(9.82e-007s)| 1.3 (1.28e-006s) | johnmaddock@compuserve.com9] {1,3 }\.[0-9]  {1,3 }\)|(([a-zA-Z0-9\-]+
\)4))([a-zA-Z] {24 }[0-9] {13 })(I?)$
[@zA209 @[] 113 N>

1(8.94€-007s)| 1.3 (1.16e-006s) | fool2@foo.edu o {13 N[O {13 N)|((azA-Z0-9\]+
\)+))([a-zA-Z] {24 10-9] {13 H(J?)$
[@ZA209  WH@([o9] 13 o

1(9.09¢-007s)| 1.28 (1.16e-006s] bob.smith@foo.tv o {13 N[O {13 N)|((azA-Z0-9\]+
\)+))([a-zA-Z] {24 }[0-9] {13 HJ?)$

1 (3.066-007s)| 1.07 (3.28-007s| EH10 2QQ :[[g:iA}:[zg_gl[i_lzig][o-g][(}-Zggm-z] {01}

1 (3.13e-007s)| 1.09 (3.42e-007s] G1 1AA {[g:iA}:[Zg_gl[/E_lz'z_;’][o'gl[%gféza'z] {01}

1(3.2e-007s) | 1.09 (3.5e-007s) | SW1 127 {[gjiA}‘[Zg_gl[i_lz'i{j][o'?[‘}'é’fgza'z] {{0'1}}

- - Tdgit] 1.2 VLdigit] 2V

1(2.68e-007s)| 1.22 (3.28e-007s)] 04/01/2001 e

1(2.76e-007s)| 1.16 (3.2¢-007s) | 12/12/2001 [[[d?é?:t]]]] {%’f Hl-digit] {12}

1(2.986-007s)| 1.03 (3.066-007s] 123 P dge 2L dig]S

1(3.26-007s) | 1.12 (3.586-007s] 3.14159 TP digt P 2L dgit]S

1(3.28e-007s) L.11(3.656-007s)] -3.14159 TR At 2L AgE]S

Table 2. Performance of Long Searcheson Visual C++ 7.1

| Static xpressive | Dynamic xpressive |

Regular Expression

1(0.019s) 1 (0.019s) Twain

1(0.0176s) 1(0.0176s) Huck([:alpha:]]+

1(1.78s) 1.1 (1.95s) [:alpha:]]+ing

1 (0.344s) 1.32 (0.453s) T J¥?Twain

1 (0.0576s) 1.05 (0.0606s) Tom|Sawyer|Huckleberry|Finn
(Tom|Sawyer|Huckleberry|Finn). 0,30 }river

1(0.164s) 1.16 (0.191s) river.I {0,30| }(Tom|SavJyer|Huck|eberr{y|Finn)} |

114




Table 3. Performance of Short Matcheson GCC 4.0

Static xpres- Dynamic —
sive Xpressive Text Regular Expression

1 (3.29e-07s)

1.35 (4.43e-07s

100- thisis aTine of fip response
which contains a message string

“(0-914)(| 19)(-)$

1.3 (6.96e-07s)

1(5.34e-07s)

1234-5678-1234-456

([[-digit:]] {43 ) {3}[[digit]] {34 }

1 (8.11e-07s)

1.41 (1.14e-06s

johnmaddock@compuserve.com9] {1,3 }\.[0-9]

(@zA-Z09 A JN@(09] L3 J\0-
{13 V)|(([a-zA-Z0-9\ ]+

\)(azAZ) {24 )09 {13 })(]2)s
([@zA209 N H@([09] 13 [0
1(6.96e-07s) | 1.56 (1.09e-06s) fool2@foo.edu 9] {1,3 )\[0-9]  {1,3 }\)|(([a-zA-Z0-9\]+
\)+))([a-zA-Z] {24 1[0-9] {13 })([?)$
([@zA209 W H@([09] 13 o
1 (7.15e-07s) 1.47 (1.05e-06s) bob.smith@foo.tv 9] {1,3 1\[0-9]  {1,3 }\)|(([a-zA-Z0-9\-]+
\)4))([a-zA-Z] {24 }[0-9] {13 }([?)$
1(2.77e-07s) | 1.14 (3.15e-07s) EH102QQ A{[ng}-[zg_g][/i_lz,i_%[o-g][%-%ga-z] {01}
1(2.77e-07s) | 1.16 (3.19e-07s) G1 1AA {[Sy-iA}-[zg_g][/i_lz,g_;][o-9][%§§\5;2a-z] {01}
1(2.81e-07s) | 1.12 (3.15e-07s| SW11z7Z {[ng}'[Zg_g][/i_lz’i{_i][o'j][%fféza'z] {{0'1}}
- - Tdigit] 1,2 Vdigit]] T2V
1(2.91e-07s) | 1.08 (3.15e-07s) 04/01/2001 (gt g
1 (3e-07s) 1.08 (3.24e-07s) 12/12/2001 [[[[d?é?tlt]]]] {Hf Jdigit ] {1231
1.18 (3.15e-07s) 1 (2.67e-07s) 123 “H2(Edigit] A\ ?[[digit]]*$
1.24 (3.43e-07s) 1 (2.77e-07s) 3.14159 “H2(Edigit] A\ ?[[digit]]*$
1.26 (3.43e-07s) 1 (2.72e-07s) -3.14159 “H2(Edigit] A\ ?[[digit]]*$

Table 4. Performance of Long Searcheson GCC 4.0

[ Static xpressive | Dynamic xpressive |

Regular Expression

1(0.0294s) 1 (0.0294s) Twain

1(0.0331s) 1 (0.0331s) Huck[[:alpha:]]+

1(1.16s) 1.1 (1.28s) [:alpha:]]+ing

1(0.212s) 1.29 (0.275s) T J¥?Twain

1(0.0519s) 1.12 (0.05815s) Tom|Sawyer|Huckleberry|Finn
(Tom|Sawyer|Huckleberry|Finn). 0,30 }river

1(0.13s) 1(0.13s) river.I {0,30| }(Tom|SavJyer|Huck|eberr{y|Finn)} |

Table 5. Executable Size

Count of Regexes | Expression Template Complexity | Size (Static) | Size (Dynamic)
1 12 57,344b 155,648b
2 24 65,536b 155,648b
3 68 81,920b 155,648b
4 87 94,208b 155,648b
5 100 102,400b 155,648b
6 115 110,592b 155,648b
7 116 110,592b 155,648b
8 120 122,880b 155,648b
9 123 122,880b 155,648b
10 129 126,976b 155,648b
11 133 139,264b 155,648b
12 149 159,744b 155,648b
13 202 172,032b 155,648b
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