
Proceedings of the First International Workshop on

Library-Centric Software Design (LCSD ’05)

An OOPSLA Workshop

October 16, 2005

San Diego, California, USA

Andrew Lumsdaine and Sibylle Schupp (Program Co-Chairs)
David Musser and Jeremy Siek (Proceedings Editors)

Rensselaer Polytechnic Institute
Computer Science Department

Technical Report 06-12

Foreword

These proceedings contain the papers selected for presentation at the workshop
Library-Centric Software Design (LCSD’05), held on October 16, 2005 in San
Diego, California, USA, as part of the yearly ACM Object Oriented Program-
ming, Systems, Languages and Applications (OOPSLA) conference. This was
the first Library-Centric Software Design workshop, and we are pleased that the
interest in the workshop was so high.

Software libraries are central to all major scientific, engineering, and business
areas, yet the design, implementation, and use of libraries are underdeveloped
arts. The goal of the Library-Centric Software Design workshop therefore is to
place the various aspects of libraries on a sound technical and scientific basis.
To that end, we welcome both research into fundamental issues and the docu-
mentation of best practices.

We received 15 papers and were able to select 7 technical papers and 6 posi-
tion papers. These papers cover a wide range of activities, including theoretical
as well as practical questions, along with applications in different languages and
paradigms. All papers were reviewed for soundness and relevance by at least
three, and in most cases four reviewers. We would like to take this opportunity
to thank the program committee for their very thorough reviews, which went far
beyond “the usual.”

In addition to the paper presentations, the workshop organized a keynote
talk, given by Joshua Bloch (Google), and a Birds-of-a-Feather (BOF) session for
the discussion of strategic questions. Thirty-two people attended the workshop,
and about fifteen the BOF session, from which emerged initial planning for
LCSD’06, which will take place Oct. 22, 2006 at OOPSLA in Portland, Oregon.

The idea for a workshop on Library-Centric Software Design was born at the
Dagstuhl meeting Software Libraries: Design and Evaluation in March 2005.
We thank the participants of this meeting for encouraging and nurturing the
workshop idea from the beginning; in particular Frank Tip and Bjarne Stroustrup
were instrumental in making the LCSD workshop happen. Bjarne initiated, and
wrote, the Call for Papers for the workshop.

We would like to thank all authors, reviewers, and the organizing committee
for their work in bringing about the LCSD workshop. We are very grateful to
David Musser (for serving as the General Chair), Jaakko Järvi (for maintaining
the webpage), Dong Inn Kim and the Open Systems Lab at Indiana University
(for setting up CyberChair and managing the submissions), and David Musser
and Jeremy Siek (for preparing the technical report). We also thank Bill Opdyke
and the OOPSLA workshop organizers for the help we received.

We hope you find the papers rewarding and stimulating.

Andrew Lumsdaine
Sibylle Schupp

Program Co-Chairs

Organization

Workshop Organizers

– Jaakko Järvi, Texas A&M University
– Andrew Lumsdaine, Indiana University
– David Musser, General Chair, Rensselaer Polytechnic Institute
– Sibylle Schupp, Chalmers University of Technology
– Jeremy Siek, Rice University
– Todd Veldhuizen, Indiana University

Program Committee

– Uwe Assman, Technical University of Dresden
– Matt Austern, Google Inc.
– Hervé Brönnimann, Polytechnic University
– Antonio Cisternino, University of Pisa
– Jack Dongarra, University of Tennessee
– Ulrich Eisenecker, University of Leipzig
– Rob Fowler, HiPerSoft, Rice University
– Jaakko Järvi, Texas A&M University
– Calvin Lin, University of Texas at Austin
– Andrew Lumsdaine, co-chair, Indiana University
– David Musser, Rensselaer Polytechnic Institute
– Sibylle Schupp, co-chair, Chalmers University of Technology
– Jeremy Siek, Rice University
– Anthony Simons, University of Sheffield
– Alex Stepanov, Adobe Systems Inc.
– Bjarne Stroustrup, Texas A&M and AT&T Labs
– Don Syme, Microsoft Research
– Frank Tip, IBM Research
– Todd Veldhuizen, Indiana University

Table of Contents

Technical Papers

What Is Generic Programming? . 1
Gabriel Dos Reis, Jaakko Järvi (Texas A&M, USA)

Software Libraries and Their Reuse: Entropy, Kolmogorov Complexity, and
Zipf’s Law . 11

Todd Veldhuizen (Indiana University, USA)

Advanced Programming Techniques Applied to CGAL’s Arrangement Pack-
age . 24

Ron Wein, Efi Fogel, Baruch Zukerman, Dan Halperin (Tel Aviv Uni-
versity, Israel)

Reference Counting in Library Design—Optionally and with Union-Find
Optimization . 34

Lutz Kettner (MPI, Germany)

A Rationale for Semantically Enhanced Library Languages 44
Bjarne Stroustrup (Texas A&M, USA)

DMTL: A Generic Data Mining Template Library . 53
Mohammad Hasan, Vineet Chaoji, Saeed Salem, Mohammed Zaki (Rens-
selaer Polytechnic Institute, USA)

Changing Iterators with Confidence. A Case Study of Change Impact Anal-
ysis Applied to Conceptual Specifications . 64

Marcin Zalewski, Sibylle Schupp (Chalmers University, Sweden)

Position Papers

Meta-Driven Library Design . 75
Antonio Cisternino (Pisa University), Walter Cazzola (Milano Univer-
sity), Diego Colombo (IMT Lucca, Italy)

Framework Design Using Inner Classes—Can Languages Cope? 80
Kaspar Osterbye (IT University of Copenhagen, Denmark)

The Diary of a Datum: An Approach to Analyzing Runtime Complexity
in Framework-Based Applications . 85

Nick Mitchell, Gary Sevitsky, Harini Srinivasan (IBM TJ Watson,
USA)

A Model for Software Libraries . 91
John Hunt, John D. McGregor (Clemson University, USA)

Making a Boost Library . 100
Robert Ramey (RRSD.com, USA)

xpressive: Dual-Mode DSEL Library Design . 105
Eric Niebler (Boost Consulting, USA)

What is Generic Programming?

Gabriel Dos Reis
Department of Computer Science

Texas A&M University
College Station, TX–77843

gdr@cs.tamu.edu

Jaakko Järvi
Department of Computer Science

Texas A&M University
College Station, TX–77843

jarvi@cs.tamu.edu

Abstract

The last two decades have seen an ever-growing interest in generic
programming. As for most programming paradigms, there are sev-
eral definitions of generic programming in use. In the simplest
view generic programming is equated to a set of language mech-
anisms for implementing type-safe polymorphic containers, such
as List<T> in Java. The notion of generic programming that moti-
vated the design of the Standard Template Library (STL) advocates
a broader definition: a programming paradigm for designing and
developing reusable and efficient collections of algorithms. The
functional programming community uses the term as a synonym for
polytypic and type-indexed programming, which involves design-
ing functions that operate on data-types having certain algebraic
structures. This paper aims at analyzing core mathematical notions
at the foundations of rational approaches to generic programming
and library design as reasoned and principled activity. We relate
several methodologies used and studied in the imperative and func-
tional programming communities. As a necessary step, we pro-
vide a base for common understanding of techniques underpinning
generic software components and libraries, and their construction,
not limited to a particular linguistic support.

1 Introduction

The notion of “generic programming” has been in use for about
four decades, popularized in the ’60s with the LISP programming
language and its descendents [McC60, ASS84] providing direct
support for higher-order functions. Since then, programming tech-
niques and linguistic support for defining algorithms that are ca-
pable of operating over a wide range of data structures have been
subjects of a large body of work. The notion of polymorphism
appears to be an essential ingredient of generic programming. In
1967, Christopher Strachey proposed a classification of polymor-
phism [Str67], based on the linguistic supports present in program-
ming languages. Luca Cardelli and Peter Wegner later refined that
classification [CW85], accounting for new language constructs.

Curiously, language features for writing some classes of polymor-
phic functions and data structures have received more attention
than sound programming techniques at the foundation of generic
libraries. In fact, generic programming (as usual with successful
programming paradigms) is often equated with language features.
It is not uncommon to see definitions of “generic programming”
that are more or less crafted to mean what the specific programming
languages under consideration support [BJJM99]. Similarly, much
of the conventions and practice of generic programming in the con-
text of C++ [ISO03, Str00] is shaped by the template system of C++.
It is thus difficult to objectively define generic programming with-

out a bias to a particular programming language over others. But if
we want to think of generic programming as a principled, reasoned
activity, such a language independent understanding is necessary.
Consequently, this paper will not focus on language features as the
subject of study. The reader interested in a comparison of main-
stream programming language features for generic programming is
referred to the report of Ronald Garcia et al. [GJL+03]. To avoid
being lost in the twists and turns of the “empty set theory” we illus-
trate our ideas and claims with extensive examples written in con-
crete programming languages, in particular, C++ [ISO03, Str00],
Haskell [PJ03], and Scheme [R5R98]. The list of programming
languages used in this paper is kept short to avoid distraction. Of
course, we hope that the reader would translate or re-express our
examples in his or her own favorite programming languages.

Our long term goal is to develop useful theories of generic pro-
gramming, to better understand and advance the practice of generic
programming as a principled activity. This paper reports work in
progress along this path, starting from analyzing and relating sev-
eral notions of generic programming.

It is good to have theories that clarify practice. Good theories, how-
ever, are not those that simply rehash common knowledge. Good
theories help predict and conquer unexplained and/or unexplored
territories. For example, Newton’s theory of gravitation was good
because it clarified practices and beliefs of the time but also helped
predict eclipses within reasonable precision. The theories of rel-
ativity developed by Einstein were good because they explained
facts that left physicists perplexed, and took up where Newton’s
theory was defeated in predictions. From empirical sciences, one
can observe that useful theories are falsifiable. That is, they can be
confronted with hard data from the world. Similarly, we posit that
useful theories that help gain better understanding of generic pro-
gramming should be confronted with practices from the real world.
The theories are not the goals in themselves, they are means by
which we seek to have better understanding. Also, care must be ex-
ercised so as not to confuse theories with realities in interpretations.

As its main contribution, this paper shows how different approaches
to generic programming can be explained within the same mathe-
matical framework, leaning on category theory. We note that the
connection between category theory and generic programming in
functional programming languages has been well established —
many generic algorithms draw their motivation from categorial no-
tions. A novelty of this paper is the establishment of similar connec-
tions for generic programming approach as pioneered by Alexander
Stepanov, David Musser and their collaborators (at the foundation
of the STL), which arises largely from a practical perspective of
organizing generic software components for increased reusability.

1

The latter approach builds on low level language features — driven
by efficiency considerations — much more so than the other ap-
proaches to generic programming. As a result, however, proving
properties of and reasoning about STL generic algorithms is diffi-
cult. We believe a stronger connection to a formal model of generic
programming will aid in this respect, guiding the development of
generic libraries, and program manipulation tools for them.

2 Background

Generic programming has been approached from various angles
in both the functional programming and imperative programming
communities. We identify two main schools of thought:

1. the “gradual lifting of concrete algorithms” discipline as first
described by David Musser, Alexander Stepanov, Deepak Ka-
pur and collaborators;

2. a calculational approach to programming, the foundations of
which were laid by Richard Bird and Lambert Meertens.

The first school defines the discipline of generic programming es-
sentially as follows: start with a practical, useful, algorithm and
repeatedly abstract over details; at any stage of the gradual abstrac-
tion, the “generic” version of the algorithm shall be such that when
instantiated it shall match the original algorithm both in seman-
tics and efficiency. The gradual lifting stops when these conditions
cease to hold. Quoting Musser and Stepanov [MS88]:

By generic programming, we mean the definition of al-
gorithms and data structures at an abstract or generic
level, thereby accomplishing many related programming
tasks simultaneously. The central notion is that of
generic algorithms, which are parameterized procedural
schemata that are completely independent of the under-
lying data representation and are derived from concrete
efficient algorithms.

The requirement of abstract specification independent of the actual
data representation is fundamental for two reasons: 1) it is at the ba-
sis of substitution of one datatype interface for another when they
are similar; and 2) it allows for classification of similar interfaces
based on their efficiency. For example, the linear search function
find() of the Standard Template Library [SL94] works on itera-
tors coming from either a linked-list or an input stream because they
provide similar interfaces for increment and value-fetching. How-
ever, binary search() is defined only for forward iterator inter-
faces.

The second school of thought in generic programming has its root
in the initial algebra approach to datatypes as advocated by Joseph
Goguen and collaborators [GTWW77, TWW82] and a calcula-
tional approach to program construction [Bir87, Mee86]. Category
theory is an essential tool in this setting. In “Generic Programming
— an Introduction” [BJJM99], Roland Backhouse et al. stated:

we introduce another dimension to the level of abstrac-
tion in programming languages, namely parameteriza-
tion with respect to classes of algebras of variable sig-
nature.

In this approach, also referred to as datatype generic program-
ming, structures of datatypes are parameters of generic pro-
grams. Datatype generic programming [JJ96, JJ97, BJJM99,
Hin00, Hin04] has had a strong focus on regular datatypes essen-
tially described by algebras generated by the functors sum, product

and unit. Algorithms written for those functors can then operate
on any inductive datatype, and are thus inherently very generic. In-
deed, a fairly large class of generic algorithms can be defined in this
manner, such as structural equality, serialization/deserialization,
zips, folds, and traversals.

The Musser–Stepanov style of generic programming emphasizes
concept analysis, the process of finding and establishing the im-
portant classes of concepts that enable many useful algorithms to
work. Programmers then explicitly define correspondence from
their datatypes to those classes of concepts. A thesis of this pa-
per is that concept analysis is a way of looking for functors that
capture common structures. We can see that the two definitions of
generic programming are fundamentally very close to each other,
but the emphasis in each view is on different aspects: one focusing
on a particular structural algebra for datatypes and the algorithms
defined in terms of that algebra, whereas the other on finding and
classifying classes of algebras based on some notions of efficiency.

Finally, we can observe that while both methodologies have an un-
derlying theoretical language-independent model, C++ has become
the dominating platform for the Musser–Stepanov style1, whereas
Haskell and its variants are the almost exclusive tool for data-type
generic programming.

3 Using category theory

Category theory is a branch of mathematics originally developed
as a language to unify and abstract over many structure and proof
patterns in Algebraic Topology. Category theory — also occasion-
ally referred to as “abstract nonsense” or “the theory of empty set”
— has found an unreasonably effective application in Computer
Science. The theoretical core ideas of the categorial approach to
datatypes and generic functions go back at least to Goguen and col-
laborators [GTWW77].

3.1 Elementary notions

This section recalls some basic notions of category theory and es-
tablishes vocabulary used in the rest of the paper. We have kept
the load of jargon to the minimum; the reader interested in further
development of category theory might advantageously consult the
standard textbook of Saunders Mac Lane [ML01]. Within the dis-
cussion, we include examples of how the categorial notions become
manifest as idioms and patterns in practical programming.

3.1.1 Categories

A category C is a collection of objects and arrows (also called mor-
phisms) between objects with three fundamental operations:

1. Every arrow ϕ in C is associated with two objects:
• its source domϕ, an object of C , and

• its target codϕ, also an object of C .
Thus, an arrow is often written as ϕ : X → Y , where X is the
source and Y the target.

2. Every object X in C is associated with a distinguished arrow
IX : X → X , called the identity arrow of object X .

1Though Musser’s and Stepanov’s early work on generic pro-
gramming was in the context of Scheme and Ada.

2

3. For two composable arrows ϕ : X → Y and ψ : Y → Z in C ,
the composition η = ψ◦ϕ : X → Z is again an arrow in C .

Furthermore, the composition operator must be associative
and admits the identity arrow as unit, which diagrammatically
reads

X
(η◦ψ)◦ϕ=η◦(ψ◦ϕ) //

ϕ

��

SSSSSSSSS

))SSSSSSSSS

T

Y
ψ

//

55kkkkkkkkkkkkkkkkkkk Z

η

OO X
ϕ //

ϕ
��?

??
??

??
Y

IY

��

ψ

��?
??

??
??

Y
ψ

// Z

The collection of arrows from an object X to an object Y is called
the hom-set from X to Y and written homC (X ,Y). The subscript is
used to emphasize the category under consideration.

3.1.1.1 Examples

Small sets Our first example of a category is Set whose objects
are sets and arrows are the usual total functions between sets.

Complete partial orders Recall that a partial order 4 on a set
X is a binary relation on X that is reflexive, transitive and anti-
symmetric. A set equipped with a partial order is said a partially
ordered set or poset for short. For example, the set N of natural
numbers equipped with the relation “divides” is a poset. A func-
tion f from a poset (X ,4X) to a poset (Y,4Y) is said monotonic if
f (x1) 4Y f (x2) whenever x1 4X x2. An ω-chain in a poset X is a
sequence x : N→ X such that xi 4 xi+1. A poset in which every
ω-chain has a least upper bound is called an ω-complete poset. An
ω-complete poset with a least element is said to be an ω-complete
pointed poset. For example, the power set 2A of a set A is an ω-
complete pointed poset when equipped with inclusion as partial or-
der.

A continuous function between two posets is a monotonic func-
tion that sends the least upper bound of an ω-chain to the least
upper bound of the image of the chain. The collection CPO of
ω-complete pointed posets is a category where the arrows are con-
tinuous functions; CPO⊥ is a CPO with a least element.

3.1.2 Initial and terminal objects

An object i is called initial in a category C if, for every object X in
C , the hom-set homC (i,X) is a singleton. Dually, an object t is said
to be terminal if for every object X in C , the hom-set homC (X , t) is
a singleton. A category can admit at most one initial (resp. termi-
nal) object, up to isomorphism.

3.1.2.1 Examples

In Set, the empty set 0 is initial. On the other hand, every singleton
1 is terminal.

3.1.3 Functors

Categories are not very interesting by themselves; what is interest-
ing about them is what is happening in or between them, e.g. func-
tors, etc. that we will define shortly. When studying structures, the
first natural thing one usually does is to look for properties that re-
main unchanged over similar structures. For categories, that means

properties that remain unchanged through the composition operator
in a class of structures.

A functor F from a category C to a category D is a morphism of
categories; it consists of two parts:

1. An object function which assigns an object F (X) in D to ev-
ery object X in C ;

2. An arrow function that assigns an arrow F (ϕ) : F (X)→F (Y)
in D to every arrow ϕ : X → Y in C such that

• the identity arrow is sent to the identity arrow, i.e.,

F (IX) = IF(X)

for every object X in C ,

• two composable arrows ϕ : X → Y and ψ : Y → Z are
sent to composable arrows and the property

F (ψ◦ϕ) = F (ψ)◦F (ϕ)

holds.

We will say that F (ϕ) is the lift of the arrow ϕ by F .

3.1.3.1 Examples

Identity functor A ubiquitous functor is the identity functor I.
Both its object function and arrow function yield their arguments
unchanged.

Constant functor Any object A in a category C gives rise to a
functorA as follows: the object function sends all objects to A, and
the arrow function sends all arrows to the identity arrow of A. In
particular, “the” singleton object 1 gives rise to the unit functor 1.

3.1.4 Multivariate functors

The notion of functor can be generalized to that of bifunctor, oper-
ating simultaneously on two categories so that the composition law
holds component-wise:

F (ϕ2 ◦ϕ1,ψ2 ◦ψ1) = F (ϕ2,ψ2)◦F (ϕ1,ψ1) .

3.1.4.1 Examples

For the purpose of this paper, we will assume that we are mostly
working in CPO⊥. This simplifies the exposition allowing us to
talk about least and greatest fixed points, making the connection to
algebras and co-algebras less heavy-weight. The functor examples
given in this section could, however, be defined in a more general
setting by universal property, i.e., by singling out specific objects
with unique arrows to or from them.

Product functor A commonly used functor is the product func-
tor. Its object function sends two objects X and Y to the object

X×××Y = {(x,y) | x ∈ X ,y ∈ Y}

and its arrow function sends two arrows ϕ : X → S and ψ : Y → T
to the arrow ϕ×××ψ : X×××Y → S×××T defined by

(ϕ×××ψ)(x,y) = (ϕ(x) ,ψ(y)) .

It can be readily verified that××× indeed is a bifunctor.

3

The product functor is concretely realized in programming lan-
guages in various ways. In C++ for instance, the object function is
implemented by the standard library class template std::pair<X,
Y>. However, there is no predefined arrow function. One can be
literally defined as

template<class X, class Y, class S, class T>
std::pair<S, T>
lift(const std::pair<X, Y>& p, S f(X), T g(Y))
{
return std::pair<S, T>(f(p.first), g(p.second));

}

Associated with the product functor are the projection combinators
π1 and π2 leading to the tupling combinator 4 that makes the fol-
lowing diagram commute

T
ϕ

||yy
yy

yy
yy

y
ψ

""DD
DD

DD
DD

D

ϕ4ψ

��
X X×××Y

π1oo π2 // Y

for any pair of arrows ϕ : T → X and ψ : T → Y .

In code, the tupling combinator would read

template<class T, class X, class Y>
std::pair<X, Y> tuple(T t, X f(T), Y g(T))
{

return std::pair<X, Y>(f(t), g(t));
}

Sum functor Yet another commonly used functor is the discrim-
inated union. It takes objects to tagged pairs

X +++Y = {0}×××X ∪{1}×××Y ∪{⊥}

and arrows to arrows defined by case analysis

(ϕ+++ψ)(⊥) =⊥
(ϕ+++ψ)((0,x)) = (0,ϕ(x))
(ϕ+++ψ)((1,y)) = (1,ψ(y))

where a pattern matching is done as follows: if the argument is
junk, then it is returned untouched; if the argument was built from
an element of the first component then it is extracted, given to the
first arrow and the result is packaged back into the first component;
otherwise if the argument was built from an element of the second
component then it is extracted, given to the second arrow and the
result is packaged back into the second component.

The above behavior takes lots of words to describe but very few
symbols to define in Haskell

data Either a b = Left a | Right b
eitherLift ::
(a -> c) -> (b -> d) -> Either a b -> Either c d

eitherLift f g (Left x) = Left (f x)
eitherLift f g (Right y) = Right (g y)

Discriminated unions are idiomatically expressed in languages
without built-in pattern matching as instances of the Visitor De-
sign Pattern [GHJV94]. In C++ for example, using this scheme we

define a base class Either with derived classes Left and Right. A
class EitherVisitor that can visit classes derived from Either is
also needed.

template<class X, class Y> class Either;
template<class X, class Y> class Left;
template<class X, class Y> class Right;

template<class X, class Y>
struct EitherVisitor {
virtual void visit(const Left<X, Y>&) = 0;
virtual void visit(const Right<X, Y>&) = 0;

};

template<class X, class Y>
struct Either {
virtual ˜Either() { }
virtual void accept(EitherVisitor<X, Y>& v) const = 0;

};

template<class X, class Y>
struct Left : Either<X, Y> {
const X& x;
Left(const X& x) : x(x) { }
void accept(EitherVisitor<X, Y>& v) const
{ v.visit(*this); }

};

template<class X, class Y>
struct Right : Either<X, Y> {
const Y& y;
Right(const Y& y) : y(y) { }
void accept(EitherVisitor<X, Y>& v) const
{ v.visit(*this); }

};

The code has a fair amount of boilerplate to simulate pattern match-
ing. Now, the lift mapping itself can be defined as

template<class X, class Y, class S, class T>
const Either<S, T>
lift(const Either<X, Y>& e, S f(X), T g(Y))
{

typedef S (*F)(X);
typedef T (*G)(Y);
struct Impl : EitherVisitor<X, Y> {

F f;
G g;
const Either<S, T>* value;
Impl(F f, G g) : f(f) g(g), value() { }

void visit(const Left<X, Y>& e)
{

value = left<S, T>(f(e.x));
}
void visit(const Right<X, Y>& e)
{

value = right<S, T>(g(e.y));
}

};

Impl vis(f, g);
e.accept(vis);
return *vis.value;

}

We use helper functions left<S, T>() and right<S, T>() for
allocating objects of the obvious types. The code is undoubtly more
involved than the corresponding few lines in Haskell (or ML). It is

4

not intended as a translation of Haskell to C++, but as illustration
of both basic categorial constructs and common techniques used in
languages lacking direct support for pattern matching.

Dually to the case of product, the sum functor comes with two in-
jection combinators ι1 and ι2 and a conflating combinator O making

X
ι1 //

ϕ

""EE
EE

EE
EE

E X +++Y

XOY
��

Y
ι2oo

ψ

||zz
zz

zz
zz

z

Z

a commutative diagram, for any pair of arrows ϕ : X → T and ψ :
Y → T .

In code, the destruction combinator is typically given by case anal-
ysis (because its domain is a discriminated union).

either :: (a -> c) -> (b -> c) -> Either a b -> c
either f g (Left x) = f x
either f g (Right y) = g y

The Maybe functor It is the functor 1+ I whose action is de-
scribed diagrammatically as

X
Maybe //

ϕ

��

1+X

Maybe(ϕ)
��

Y
Maybe // 1+Y

Conceptually, it describes the type of objects that may hold values
of another datatype or nothing.

3.1.5 Algebras and co-algebras

In this section we consider only endofunctors, i.e., functors with
identical sources and targets.

3.1.5.1 Algebras

The notion of algebra generalizes that of Σ-algebra from the theory
of Universal Algebra [Coh81] where an algebra can be thought of as
interpretation of a collection of function symbols, and the structures
of their domains are given by the functor.

Given an endofunctor F of a category C , an arrow of the form

α : F(X)→ X

is called an F-algebra — written (α,X)F or simply (α,X) when
the functor is understood from context — and the object X is its
carrier.

In CPO⊥ for example, if one thinks of a polynomial functor as
describing a structure X together with operation symbols, then an
algebra appears as an interpretation by case analysis.

Example The Haskell datatype

data Nat = Zero | Succ Nat

is a Maybe-algebra, because the above definition introduces the op-
eration Zero�Succ where

Zero :: Nat -- can be thought as Zero :: 1 -> Nat
Succ :: Nat -> Nat -- successor operation

Here we would like to interpret Zero as the natural number 0, and
Succ as the operation that yields the successor of a natural number.
Of course, that is not the only possible interpretation; but among all
possible interpretations, there is a distinguished one. We make that
idea more precise in the following paragraphs.

Given an endofunctor F on a category C and two F-algebras (X ,α)
and (Y,β), an arrow ϕ : X → Y that makes

F (X) α //

F(ϕ)
��

X

ϕ

��
F (Y)

β // Y

a commutative diagram, i.e., ϕ ◦ α = β ◦ F (ϕ), is called an F-
algebra homomorphism. The collection Alg(F) of F-algebras can
be readily seen to form a category where the arrows are the F-
algebra morphisms. The initial object (µF, [) of that category, when
it exists, is called the initial F-algebra. It has the distinguishing
characteristic that given any F-algebra (ϕ,X) there is unique F-
algebra homomorphism — written ([ϕ]) — from µF to X making
the diagram

F (µF) [//

F(([ϕ]))
��

µF

([ϕ])

��
F (X)

ϕ // X

commutative. The arrow ([ϕ]) is said to be the catamorphism of ϕ.
Examples of catamorphisms will be given in §3.2.1

3.1.6 Coalgebras

A coalgebra is the dual notion of an algebra, i.e., an arrow of the
form

α : X → F (X)

which we will denote by [α,X]F . One can also define the notion
of F-coalgebra homomorphism which is an arrow ψ : X → Y that
makes the diagram

X

ψ

��

α // F (X)

F(ψ)
��

Y
β // F (Y)

commute for any pair of F-coalgebras α and β. The collection
CoAlg(F) of F-coalgebras, with F-coalgebra homomorphisms as
arrows, is a category. The terminal object (νF,]) of that category,
when it exists, is called the final coalgebra of the functor F . It is
characterized by the fact that given any F-coalgebra [ψ,X], there
corresponds a unique F-coalgebra homomorphism from X to νF

5

that makes

X

[(ψ)]

��

ψ // F (X)

F([(ψ)])
��

νF
] // F (νF)

a commutative diagram. The F-coalgebra [(ψ)] is called the anamor-
phism of the arrow ψ.

3.2 Categorial datatypes

3.2.1 Initial datatypes

The initial algebraic approach to datatypes posits that when work-
ing in an appropriate category, many abstract data types are nothing
but initial algebras of some functor. For example, the usual set of
natural numbers as described by the Peano axioms is the initial al-
gebra of the functor Maybe.

The main benefit of viewing datatypes as initial algebras is that an
iteration operator over the datatypes, called fold, follows for free.
That crucial property provides a convenient implementation tool
and reasoning device to capture patterns. In CPO⊥ for instance,
it can be shown that every polynomial functor has an initial alge-
bra, which in fact is its least fixed point.

For example, consider the bifunctor

S (T,X) = 1+++T×××X = Maybe(T×××X).

Its least fixed point with respect to the second argument yields an
object parameterized by T

Seq(T) = 1+++T×××Seq(T)

which captures many algebraic aspects of finite sequences of values
of type T . When viewed as acting on T , it can be thought of as
a functor; we will call it the sequence functor. A cons-list from
functional programming practice is an example of such an object.
In Haskell, it is defined by

data List a = Nil | Cons a (List a)

For a fixed T , Seq(T) is the least fixed point of the functor X 7→
1+++T×××X . Computing the length of such list is readily implemented
by

length :: List a -> Int
length Nil = 0
length (Cons a as) = 1 + length as

where it is apparent that the length function is obtained by sending
the unit value (1) to 0 and the list constructor Cons to the succes-
sor operation. That is the essence of catamorphisms, i.e., mapping
constructors to functions. Note how that description is an abstract
specification of the following C++ algorithm:

template<class Forward>
int length(Forward first, Forward last)
{
int n = 0;
for (; first != last; ++first)

++n;
return n;

}

The fundamental operations of the functor Seq are materialized here
by

• when to stop or empty sequence 1↔ first == last;

• next elements of the sequence ++first.

Then the mapping corresponds to initialization to 0 and incremen-
tation respectively. The act of replacing a signature (here 0 and
the successor functions) with a function is the essence of catamor-
phism, and the basis of polytypic functions. The STL algorithm
accumulate is the fold for sequences, and many other STL algo-
rithms are specializations of it.

3.2.2 Final datatypes

Final datatypes are dual to initial datatypes. They can be modeled
as final coalgebras. In the category CPO⊥, the final coalgebra of
a polynomial functor is its greatest fixed point. For example, the
greatest fixed point of the functor

X 7→ T×××X

is the infinite list or stream of values of types T , characterized by
two fundamental operations

head : Stream(T)→ T
tail : Stream(T)→ Stream(T) .

The C++ standard iterator ostream iterator<> is a genuine ex-
ample of handles to streams — there is no way to test for “stopping
conditions”.

The greatest fixed point of the X 7→Maybe(T×××X) (see §3.2.1) is
a potentially infinite list. Unlike the case for streams, one can test a
potentially infinite list for stopping conditions.

The main difference between initial datatypes and final datatypes is
that the former are characterized by constructors whereas the latter
are characterized by observers and modifiers.

4 Recursion patterns

The categorial approach to data types makes clear connections be-
tween the patterns of “regular” recursive algorithms and those of
data types. The most popular being catamorphism, anamorphism
and hylomorphism (an anamorphism followed by a catamorphism)
[MFP91]. Interestingly, such patterns are essentially present in the
Musser–Stepanov approach to structure algorithms, in slightly dif-
ferent forms (iterative mostly) and spelled out differently. Consider
the following function template accumulate from the STL:

template <class Input, class T, class BinOp>
T accumulate(Input first, Input last, T init, BinOp op)
{
for (; first != last; ++first)

init = op(init, *first);
return init;

}

This function essentially defines what corresponds to a fold, the
general recursion operator for defining catamorphisms, over a List
functor. Compare this to the typical definition of a fold in, say,
Haskell:

6

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

When foldr is called with a mapping for the data constructors
list, we get specific catamorphisms. This is directly visible in the
Haskell case: the mapping z is applied to lists constructed with
[], and f to lists constructed with the cons operator :. We use
foldr (instead of foldl) because it is the natural iteration opera-
tion for the list datatype as defined in Haskell. For example, foldr
(+) 0 a:(b:(c:[])) gives, after mapping + and 0 appropriately,
a+(b+(c+0)).

In the C++ version, init corresponds to z, the empty list is denoted
by the negation of first != last, and op is the same as f. As an
example, in Haskell, the catamorphism length for computing the
length of a list is obtained by mapping 0 to the empty list, and an
increment function to the cons constructor:

length ls = foldr (1+) 0 ls

Analogously, the C++ length function can be written in terms of
accumulate as follows:

struct incrementor {
template<class X, class Y>
X operator()(X x, const Y& t) const { return x + 1; }

};

template <class In>
int length(In first, In last)
{
return accumulate(first, last, 0, incrementor());

}

With the help of a library that provides convenient notation [JPL03],
one can simply write

template <class In>
int length(In first, In last)
{
return accumulate(first, last, 0, _1 + 1);

}

Many other STL algorithms — for each, transform, and find to
name a few — can be defined as catamorphisms using accumulate.
The view of a fold as a combinator that defines a traversal, or re-
cursion pattern, for algebras with a particular signature, applies
equally well in the context of STL, as it does in the context of Bird–
Meertens formalism. However, whereas generalized folds over all
regular data types, such as binary trees, are possible in data-type
generic programming, this is not the case for STL. For example,
accumulate is defined only for sequences, not for algebras describ-
ing binary trees. As a remedy, STL defines a homomorphism from
binary trees (the map data structure implemented as red-black trees)
to sequences, but this does not enable generic algorithms that truly
operate on the structure of the tree. In particular, the homomor-
phism fixes in-order as the only traversal for STL maps. There
are practical consequences of this. For example, copying a STL
map to another map with the std::copy algorithm exhibits worst
case complexity in terms of necessary rotations in the underlying
red-black tree. Similarly, the generic find algorithm cannot take
advantage of the special structure of the tree.

5 Transforming sequences

In line with our “meta” views developed in the opening of this re-
port, we start with the simple idea of transforming a sequence into
another one by applying a given function to each element. For con-
creteness, here is a Scheme routine for that:

(define (map function sequence)
(cond ((null? sequence) nil)

(else (cons (function (car sequence))
(map function sequence)))))

That definition assumes the ubiquitous, built-in, Scheme datatype
of list to represent a sequence of items. The program fragment in-
spects its input with the observers

• null? to test for an empty sequence;

• car to inspect the value of the head of a sequence;

• cdr to get to the remaining items in a sequence;

and constructs its output with:

• cons to construct a new sequence out of an existing item and
a sequence.

These operations seem to be fundamental primitives needed to write
the algorithm as a Scheme program. Data constructors (e.g. cons)
are typical to initial algebra treatment of generic datatypes and
functions, whereas observers (e.g. null?, car, cdr) are defining
characteristics of final coalgebras. Consequently, this expression of
the transformation function makes a mixture of initial algebras and
final coalgebras. Is that mixture essential to capture the algebraic
essence of map? We will see a purely initial algebraic formulation
in §5.1. If not, is that mixture essential to make map operate on
a wider class of sequence implementations? A fundamentally fi-
nal coalgebraic definition is given in §5.2 as a C++ function that
operates on a wide variety of sequence instances.

The definition of map has a direct imprint of the built-in list type
— uses of null?, car, cdr and cons that have built-in meaning.
As is, it is not usable with another incarnation of sequences, say
with vectors. However, that limitation can be overcome in several
ways. One way is to use symbols — e.g. empty?, head, tail,
new-seq and null — that can support the abstract operations on a
variety of sequence implementations, based on the “data-directed”
programming paradigm [ASS84]. In that perspective, their imple-
mentations would abstract away the differences in sequence im-
plementations through runtime type-based dispatch. In C++ such
an approach could be expressed through overloading or overriding,
whereas in Haskell it would take the form of type classes.

Another way of removing the limitation is via higher-order func-
tions, passing the necessary operators as parameters:

(define (map fun seq empty? head tail new-seq null)
(cond ((empty? seq) null)

(else (new-seq (fun (head seq))
(map fun (tail seq) empty?

head tail new-seq null)))))

This version is fully general and makes no hard-coded assumptions
on how the sequence is represented. However, the function may
be awkward to use. In particular, every use site of this function
must ensure that the right operations are passed along with the right

7

sequence implementations. For example, calling map with a list and
vector-ref will lead to (runtime) error. We see that what we need
here is a way of referring to the iteration operator of the concrete
implementation of the notion of sequence.

This new version of map, as well as the first, features several is-
sues in generic programming — accessors as final coalgebras and
constructors as initial algebras.

5.1 A slightly different look at map

The map function is also part of the Haskell Prelude [PJ03] and
defined as

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x : xs) = f x : map f xs

The explicit type annotation makes it unambiguous that map is de-
fined to work only on Haskell’s built-in datatype list. The only
genericity achieved here is the variability of the contained element
type. However, as we observed in the previous section, the notion
of transformation is not restricted to a specific instance of the notion
of sequence.

This expression of map uses a slightly different approach. Namely,
it accesses the building blocks of the input sequence through pattern
matching. Therefore it makes essential use of the list data construc-
tors, and is completely defined in terms of those. It can be com-
pletely characterized in terms of the initial algebra for list (which
really has a stack implementation in most functional programming
languages). Consequently, while the definition works on the list
implementation of the notion of sequence, it does not work on the
Haskell Array implementation or any other sequence implementa-
tion that does not use the list constructors.

To overcome the use of built-in constructors that tie map to a given
data type, the Haskell library uses a type class Functor as imple-
mentation of the general notion of functor, as discussed in §3.1.3:

class Functor f where
fmap :: (a -> b) f a -> f b

The idea is that the symbol fmap will be applicable to all type con-
structors for which there are known instance declarations stating
that they act like functors. Given such a declaration, a use of fmap
on a particular concrete sequence is to be made in conjunction with
Functor instance declarations for that concrete sequence imple-
mentation. This situation reminds us of the drawbacks typical of
object oriented programming where operations are closely tied to
objects (e.g. member functions) so that writing N algorithms for P
datatypes requires solving N×P problems.

Applying Stepanov–Musser’s methodology to lift map to more
generic levels, capable of operating over a wider range of data
types, requires giving up specific knowledge of the built-in list type.
As a consequence, the expression of the idea of sequence transfor-
mation seems to become more involved. To what extent are the
added complexities intrinsic to map as opposed to language arti-
facts? Is the increase of complexity a sign of useful generality gain?

5.2 Yet another look at map

In this section, we look at the expression of the map that in the C++
community is known as the standard algorithm transform:

template<class In, class Out, class Oper>
Out transform(In first, In last, Out out, Oper op)
{
for (; first != last; ++first)

*out++ = op(*first);
return out;

}

It is standard, in programming with C++, to represent sequences
as pairs of iterators; thus generic sequence algorithms operate on
such representations, as laid out in the STL [SL94]. The operations
of reading the head of a sequence and moving to the remaining
parts are implemented by * and ++ operators. The C++ version of
transform does not use list (sequence) constructors to build the
result. Rather, the formulation uses accessors, as if the view is that
of final datatypes. Consequently, the algorithm can work on all in-
stances of iterators (therefore sequence instances) that provide sim-
ilar interfaces. The complexity in terms of the number of concrete
sequence implementations and concrete transformation implemen-
tations is significantly reduced.

6 Limitations

The semi-open interval model used in the STL to represent se-
quences leaves some data structures out of the picture, most notably
circular lists. Similarly, circular list appears to resist initial data type
formulations. In fact, circular lists appear to be more amenable to
formalization through final coalgebras [Kam83].

What do we gain from the category theory approach to generic pro-
gramming? Is it effective? What does it explain and what does it
predict?

In our view, the categorial approach seeks to capture common alge-
braic structures, similarities of interfaces as advocated by Dehnert
and Stepanov [DS98] (see Section 7). For example, the fold() iter-
ation operators are implementation tools and reasoning devices for
capturing traversal and proof patterns common to a class of generic
functions [Hut98]. We find the categorial approach as a promising
starting point for a theory that can clarify and explain the practice
of Musser–Stepanov style generic programming. Moreover, we be-
lieve, in accordance with what we state in the introduction of this
paper, that the mathematical framework is sufficient for prediction
and conquering new grounds as well such as STL in parallel and
distributed programming contexts. Along those lines, we mention
that libraries and compiler frameworks [RG03] based on the cal-
culational approach, from functional programming perspective, are
subjects of active research.

7 Discussion

In this section, we examine, within the mathematical framework in
place, the main two approaches to generic programming. The pur-
pose is to identify commonalities and differences in more definite
terms.

Dehnert and Stepanov [DS98] advocate maximizing reuse of soft-
ware components through alikeness identification:

8

[...] Breadth of use, however, must come from the sep-
aration of underlying data types, data structures, and
algorithms, allowing users to combine components of
each sort from either the library or their own code. Ac-
complishing this requires more than just simple, abstract
interfaces — it requires that a wide variety of compo-
nents share the same interface so that they can be sub-
stituted for one another. It is vital that we go beyond
the old library model of reusing identical interfaces with
pre-determined types, to one which identifies the mini-
mal requirements on interfaces and allows reuse by sim-
ilar interfaces which meet those requirements but may
differ quite widely otherwise. Sharing similar interfaces
across a wide variety of components requires careful
identification and abstraction of the patterns of use in
many programs, as well as development of techniques
for effectively mapping one interface to another.

Separating data structures from algorithms is key to reducing the
complexity of implementing N algorithms for P data structures, as
exemplified by the STL. At first sight, that seems to run contrary to
the practice of the calculational approach which puts emphasis on
iteration operators (folds) intimately associated with recursive data
structures. However, it should be observed that once the class of
algorithms of interest is identified (e.g. sequence algorithms) the
iteration operator is also fixed. Other data structures “just” need
to have their iteration operators adapted or mapped to the iteration
scheme of reference. For example, in the STL all sequences as well
as associative containers (binary trees in disguise) provide means
to iterate linearly over them.

The “minimal requirements” tip translates to “final coalgebras” in
our framework. That aspect is unlike the approach of the Bird–
Meertens formalism, which has been traditionally based on “initial
algebras.”

Dehnert and Stepanov [DS98] continue:

We call the set of axioms satisfied by a data type and a
set of operations on it a concept. Examples of concepts
might be an integer data type with an addition opera-
tion satisfying the usual axioms; or a list of data ob-
jects with a first element, an iterator for traversing the
list, and a test for identifying the end of the list. The
critical insight which produced generic programming is
that highly reusable components must be programmed
assuming a minimal collection of such concepts, and
that the concepts used must match as wide a variety
of concrete program structures as possible. Thus, suc-
cessful production of a generic component is not sim-
ply a matter of identifying the minimal requirements of
an arbitrary type or algorithm — it requires identifying
the common requirements of a broad collection of sim-
ilar components. The final requirement is that we ac-
complish this without sacrificing performance relative
to programming with concrete structures.

We can contrast the above to a characterization of abstract data
types as classes of algebras. According to Thatcher et al [TWW82]:

what is “abstract” about an abstract data type is that it
consists of an isomorphism class of algebras rather than
any concrete representation of the class. When it comes
to specifying an abstract data type one can display a par-
ticular algebra and define the abstract data type as the

isomorphism class of that algebra. The proposed alter-
native is to characterize the isomorphism class using ax-
ioms written in terms of the operations on the types.

A fundamental difference between the first school and the second
school is that the latter equates linguistic support with generic pro-
gramming, while the former defines it as a methodology. Further-
more, the Musser–Stepanov school promotes structuring compo-
nents based on the efficiency or algorithmic complexity offered by
the coalgebras, whereas those concerns appear to be secondary in
the calculational approach. For example, the data structure list
is usually taken as the canonical realization of sequences in the
functional programming setting. We are not aware of work in the
calculational approach, where complexity guarantees of operations
(in the style of Musser–Stepanov) and genericity are given equal
weight.

In a sense, the opposition of styles is similar to that of bottom-
up versus top-down design. From our perspective, a good the-
oretical framework for generic programming should provide for
mathematical tools necessary for systematic application of Dehn-
ert and Stepanov’s methodology to both the implementation and
correctness proof of generic components as exhibited by the Bird–
Meertens formalism.

8 Conclusions

The two approaches to generic programming, 1) as defined by the
process and outcome of designing STL and similar libraries, and 2)
as defined by the practice of data-type generic programming in the
functional programming community, are intrinsically connected.
The first approach to generic programming focuses on finding use-
ful fundamental algebras, and defining generic functions mapping
to such algebras following a final coalgebra point of view. The
second, datatype generic programming, operates on initial algebras
and focuses on finding algorithms on those algebras. These algo-
rithms are applicable to a wide variety of data-types, as there are
conversions from regular inductive datatypes to the structures of the
functors that define them. The most interesting aspect of datatype
generic programming is iteration operators for free as implementa-
tion tools and reasoning devices to capture patterns in proofs about
generic functions. Combining Musser–Stepanov’s methodology
with a categorial approach to datatypes appears to be a promising
road for systematic implementation and proof of properties about
useful generic programming, and is subject for future work.

9 Acknowledgments

We are grateful to the anonymous reviewers for their comments
and suggestions that improved the paper. We are grateful to Bjarne
Stroustrup for suggesting the doggiemorphism recursion pattern,
which regretfully did not fit within the space limits.

10 References

[ASS84] Hal Abelson, Jerry Sussman, and Julie Sussman.
Structure and interpretation of Computer Programs.
MIT Press, 1984.

[Bir87] Richard Bird. Logic of Programming and Calculi
of Discrete Design, volume F.36 of NATO AI Series,
chapter An introduction to the theory of list. Springer
Verlag, 1987.

9

[BJJM99] Roland Backhouse, Patrik Jansson, Johan Jeuring,
and Lambert Meertens. Advanced Functional Pro-
gramming, volume 1608 of Lecture Notes in Com-
puter Science, chapter Generic Programming — An
introduction, pages 28–115. Springer-Verlag, 1999.

[Coh81] Paul Cohn. Universal Algebra. Kluver, 1981.

[CW85] Luca Cardelli and Peter Wegner. On Understanding
Types, Data Abstraction and Polymorphism. Com-
puting Surveys, 17(4):471–522, December 1985.

[DS98] James C. Dehnert and Alexander Stepanov. Funda-
mentals of Generic Programming. In Report of the
Dagstuhl Seminar on Generic Programming, volume
1766 of Lecture Notes in Computer Science, pages 1–
11, Schloss Dagstuhl, Germany, April 1998.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johson, and John
Vlissides. Design Patterns. Addison-Wesley, 1994.

[GJL+03] Ronald Garcia, Jaakko Järvi, Andrew Lumsdaine,
Jeremy Siek, and Jeremiah Willcock. A Compara-
tive Study of Language Support for Generic Program-
ming. In Proceedings of the 18th ACM SIGPLAN
Conference on Object-Oriented Programming, Sys-
tems, Languages and Applications, pages 115–134.
ACM Press, 2003.

[GTWW77] J.A. Goguen, J.W. Thatcher, E.G. Wagner, and J.B.
Wright. Initial Algebra Semantics and Continuous
Algebra. Journal of the Association of Computing
Machinery, 24(1):68–95, January 1977.

[Hin00] Ralf Hinze. A New Approach to Generic Func-
tional Programming. In Proceedings of the 27th ACM
SIGPLAN-SIGACT symposium on Principles of Pro-
gramming Languages, pages 119–132, Boston, USA,
2000. ACM Press.

[Hin04] Ralf Hinze. Generics for the masses. In Proceedings
of the ninth ACM SIGPLAN International Conference
on Functional Programming, pages 236–243, Snow
Bird, UT, USA, 2004.

[Hut98] Graham Hutton. Fold and Unfold for Program Se-
mantics. In Proceedings of the third ACM SIGPLAN
International Conference on Functional Program-
ming, pages 280–288, Baltimore, Maryland, USA,
1998.

[ISO03] International Organization for Standards. Interna-
tional Standard ISO/IEC 14882. Programming Lan-
guages — C++, 2nd edition, 2003.

[JJ96] Johan Jeuring and Patrik Jansson. Polytypic Program-
ming. In Advanced Functional Programming, Second
International School — Tutorial Text, volume 1129 of
Lecture Notes In Computer Science, pages 68–114.
Springer-Verlag, 1996.

[JJ97] Patrik Jansson and Johan Jeuring. Polyp — a poly-
typic programming language extension. In Pro-
ceedings of the 24th ACM SIGPLAN-SIGACT sym-
posium on Principles of Programming Languages,
pages 470–482, Paris, France, 1997.

[JPL03] J. Järvi, G. Powell, and A. Lumsdaine. The Lambda
Library: unnamed functions in C++. Software—
Practice and Experience, 33:259–291, 2003.

[Kam83] Samuel Kamin. Final Data Types and Their Specifica-

tion. ACM Transaction on Programming Languages,
5(1):97–123, January 1983.

[McC60] John McCarthy. Recursive Functions of Symbolic Ex-
pressions and Their Computation by Machine, Part I.
Communications of The ACM, April 1960.

[Mee86] Lambert Meertens. Algorithmics — toward program-
ming as a mathematical activity. In J.W. de Bakker
and J.C. van Vliet, editors, Proceedings of the CWI
Symposium on Mathematics and Computer Science,
pages 289–334, North-Holland, 1986.

[MFP91] Erik Meijer, Maarten Fokkinga, and Ross Paterson.
Functional programming with bananas, lenses, en-
velopes and barbed wire. In Proceedings of the 5th
ACM conference on Functional programming lan-
guages and computer architecture, pages 124–144,
New York, NY, USA, 1991. Springer-Verlag New
York, Inc.

[ML01] Saunders Mac Lane. Categories for the Working
Mathematician. Springer, 2nd edition, 2001.

[MS88] David A. Musser and Alexander A. Stepanov. Generic
Programming. In Proceedings of International Sym-
posium on Symbolic and Algebraic Computation, vol-
ume 358 of Lecture Notes in Computer Science, pages
13–25, Rome, Italy, 1988.

[PJ03] Simon Peyton Jones. Haskell 98 Language and Li-
braries, The Revised Report. Cambridge University
Press, 2003.

[R5R98] Revised5 Report on the Algorithmic Language
Scheme. Higher-Order and Symbolic Computation,
11(1), August 1998.

[RG03] Fethi A. Rabhi and Sergei Gorlatch, editors. Patterns
and Skeletons for Parallel and Distributed Comput-
ing. Springer, 2003.

[SL94] Alexander Stepanov and Meng Lee. The Standard
Template Library. Technical Report N0482=94-0095,
ISO/IEC SC22/JTC1/WG21, May 1994.

[Str67] Christopher Strachey. Fundamental Concepts in Pro-
gramming Languages. Lecture notes for the Inter-
national Summer School in Computer Programming,
August 1967.

[Str00] Bjarne Stroustrup. The C++ Programming Lan-
guage. Addison-Wesley, special edition, 2000.

[TWW82] J.W. Thatcher, E.G. Wagner, and J.B. Wright. Data
Type Specification: Parameterization and the Power
of Specification Techiniques. ACM Transaction on
Programming Languages and Systems (TOPLAS),
4(4):711–732, October 1982.

10

Software Libraries and Their Reuse:
Entropy, Kolmogorov Complexity, and Zipf’s Law

[Extended Abstract]

Todd L. Veldhuizen
Open Systems Laboratory

Indiana University Bloomington
Bloomington, IN, USA

email: tveldhui@acm.org

Abstract

We analyze software reuse from the perspective of informa-
tion theory and Kolmogorov complexity, assessing our ability
to “compress” programs by expressing them in terms of soft-
ware components reused from libraries. A common theme
in the software reuse literature is that if we can only get the
right environment in place— the right tools, the right gener-
alizations, economic incentives, a “culture of reuse” — then
reuse of software will soar, with consequent improvements
in productivity and software quality. The analysis developed
in this paper paints a different picture: the extent to which
software reuse can occur is an intrinsic property of a problem
domain, and better tools and culture can have only marginal
impact on reuse rates if the domain is inherently resistant to
reuse. We define an entropy parameter H ∈ [0,1] of problem
domains that measures program diversity, and deduce from
this upper bounds on code reuse and the scale of compo-
nents with which we may work. For “low entropy” domains
with H near 0, programs are highly similar to one another
and the domain is amenable to the Component-Based Soft-
ware Engineering (CBSE) dream of programming by compos-
ing large-scale components. For problem domains with H
near 1, programs require substantial quantities of new code,
with only a modest proportion of an application comprised
of reused, small-scale components. Preliminary empirical re-
sults from Unix platforms support some of the predictions of
our model.

1 Introduction and Overview

Software reuse offers the hope that software construction can
be made easier by systematic reuse of well-engineered com-
ponents. In practice reuse has been found to improve pro-
ductivity and reduce defects [3, 12, 16, 23, 24]. But what
of the limits of reuse — will large-scale reuse make software
construction easier? Thinking here is varied, but for the sake
of argument let me artificially divide the opinions into two
competing hypotheses. First the more enthusiastic end of the
spectrum, which I associate with the Component-Based Soft-
ware Engineering (CBSE) movement.

Hypothesis 1 (Strong reuse). Large-scale reuse will allow
mass-production of software, with applications being assem-
bled by composing large, pre-existing components. The activity
of programming will consist primarily of choosing appropriate
components from libraries, adapting and connecting them.

Strong reuse is thought to thrive in problem domains with
great concentration of effort and similarity of purpose, i.e.,
many people writing similar software whose requirements
show only minor variation. However, the question of whether
strong reuse can succeed for software construction considered
globally, across disciplines and organizations, remains uncer-
tain. A more cautious view of reuse is the following.

Hypothesis 2 (Weak reuse). Large-scale reuse will offer use-
ful reductions in the effort of implementing software, but these
savings will be a fraction of the code required for large projects.
Nontrivial projects will always require the creation of substantial
quantities of new code that cannot be found in existing compo-
nent libraries.

Representative of weak reuse thinking is the following pre-
scription for code reuse in well-engineered software from Jef-
frey Poulin [24]: up to 85% of code ought be reused from
libraries, with a remaining 15% custom code, written specifi-
cally for the application and having little reuse potential. The
percentage of code that may be reused from libraries varies
greatly across problem domains, but weak reuse paints a fairly
accurate picture of the software landscape of today. Many ex-
planations are proposed for why strong reuse is not happening
on a global scale (cf. [9]). A common position in the reuse
literature is that if we can only get the right environment in
place — the right tools, generalizations, economics, a “culture
of reuse” — then reuse of software will soar, with consequent
improvements in productivity and software quality.

A contrary view. The perspective developed in this paper sug-
gests that the extent to which reuse can happen is an intrinsic
property of a problem domain, and that improving the ability
of programmers to find, adapt, deploy, generalize and market
components will have only marginal impact on reuse rates if
the domain is resistant to reuse. We propose to associate with
problem domains an entropy parameter 0≤ H ≤ 1 measuring
the diversity of a problem domain. When H = 1, software is
extremely diverse and we should expect very little potential
for reuse; in fact, we show that the proportion of an appli-
cation we can draw from libraries approaches zero for large
projects. For problem domains with H < 1, software is some-
what homogeneous, and with decreasing H comes increasing
potential for reuse. The theory we develop suggests that an
expected proportion of at most (1−H) of an application’s code
may be reused from libraries, with a remaining proportion H
being custom code written specifically for the application. As
H nears 0 we enter the strong reuse utopia of “programming

11

by composing large components.” The possibilities of reuse
are strictly limited by the parameter H, which is an intrinsic
property of the problem domain.

We develop this theory by examining our ability to compress
or compactify software by the use of libraries. We shall speak
throughout this paper of compressed programs, by which we
mean programs written using libraries, and uncompressed pro-
grams that are stand-alone and do not refer to library compo-
nents. The principle tools we employ are information theory
and Kolmogorov complexity. Both of these carry subtly dif-
ferent notions of compressibility that we shall have to juggle.
The information theory notion deals with compressing objects
by identifying patterns that appear frequently and giving them
short descriptions — as in English we have taken to saying
“car” for “automobile carriage.” The Kolmogorov version of
compressibility describes our ability to find for a given pro-
gram a shorter program with the same behaviour, without ap-
pealing to how typical that program might be for the problem
domain within which we are working. We assume some basic
familiarity with information theory as might be found in e.g.
[7, Ch. 2] or [20]. The essentials of Kolmogorov complexity
are reviewed in Section 3.

Library components and prime numbers. Integers factor
into a product of primes; software can be factored into an
assembly of components. Library components are the prime
numbers of software. This would be a terribly naive thing to
say were it not for the many wonderful parallels that turn up:

• There are infinitely many primes; in Section 5.2.1 we
prove there are infinitely many components for a prob-
lem domain that reduce expected program size (thus
guaranteeing employment for library writers.)

• The nth prime is a factor of ∼ 1
n lnn of the integers. Theory

predicts the nth most frequently used library component
has an ideal reuse rate of about 1

n logn log+ n (Section 4.2).

• The Erdös-Kac theorem states that the number of factors
of an integer tends to a normal distribution; we measure
experimental data that suggests a similar theorem might
be provable for software components (Figure 4).

• The Prime Number Theorem states that the nth prime is
∼ log(n lnn) bits long. We show that the ideal configu-
ration for libraries is that the nth most frequently used
component is of size ≥ logn and ≤ 1−H

H o(nε) for ε ≥ 0
(Section 5.2.2).

Reuse and Zipf’s Law. It is known that hardware instruction
frequencies follow an iconic curve described by George K. Zipf
for word use in natural languages [17, 19, 29]. Zipf noted that
if words in a natural language are ranked according to use fre-
quency, the frequency of the nth word is about n−1. Zipf-style
empirical laws crop up in many fields [25, 22]. Evidence sug-
gests programming language constructs also follow a Zipf-like
law [5, 18]. It is natural then to wonder if this result might
extend to library components. Our results support this con-
clusion. Figure 1 shows the reuse counts of subroutines in
shared objects on three Unix platforms, clearly showing Zipf-
like n−1 curves. These results are described in detail in Sec-
tion 6. The appearance of such curves is not happenstance. In
Section 4.2 we argue they are a direct result of programmers

100 101 102 103 104 105 106 107 108
100

101

102

103

104

105

106

107

108

Subroutines ordered by use frequency (n)

N
um

be
r o

f u
se

s

Linux reuse data
SunOS reuse data
Mac OS X reuse data

Figure 1. Data collected from shared objects on several
unix platforms, showing the number of references to li-
brary subroutines. The observed number of references
shows good agreement with Zipf-style frequency laws of
the form c · n−1 (dotted diagonal lines). A detailed expla-
nation of this data is given in Section 6.

trying to write as little code as possible by reusing library sub-
routines; this drives reuse rates toward a “maximum entropy”
configuration, namely a Zipf’s law curve.

1.1 Organization

The remainder of this paper is organized as follows. Section 2
introduces an abstract model of software reuse from which
we derive our results. In Section 3 we give a brief overview
of Kolmogorov complexity. In Section 4 we derive bounds
on the rates at which software components may be reused,
and give an account for the appearance of Zipf-style empirical
laws. Section 5 examines the potential for software reuse as
a function of the parameter H. In Section 6 we present some
preliminary experimental results, and Section 7 concludes.

2 Modelling library reuse

In this section we propose an abstract model capturing some
essential aspects of software reuse within a problem domain.
The basic scenario is this: we have a library, possibly many
libraries that we collectively consider as one, that contains
a great number of software components. These components
may be subroutines, architectural skeletons, design patterns,
generics, component generators, or whatever form of abstrac-
tion we may yet invent; their precise nature is unimportant
for the argument. In using a component from the library we
achieve some reduction in the size of the program, and per-
haps consequently, in the effort required to implement it. Pro-
gram size serves as a rough lower bound to effort, but it would
be a grave error to confuse the two.

2.1 Distribution of programs in a domain

We presume that the projects undertaken by programmers
working in a problem domain can be modelled by a proba-

12

bility distribution on programs. The probability distribution
is defined on “uncompressed” programs that do not use any
library components. These uncompressed programs can be
viewed as specifications that programmers set out to realize.

We consider compiled programs modelled by binary strings
on the alphabet {0,1}. We write ‖w‖ for the length of a string
w. Finite programs are countably infinite in number, so we im-
mediately encounter the problem of defining a probability dis-
tribution in which the probability of encountering individual
programs may be infinitesimal. A rigorous approach would be
to employ measure theory, for example Loeb measure, which
would allow us to speak of the probability of individual pro-
grams. This would require some rather daunting machinery
and we instead settle for a more accessible approach similar
to that used by [4, 6, 26].

Let A≤n = {w ∈ {0,1}∗ : ‖w‖ ≤ n} denote compiled programs
of length at most n bits. We introduce a family of conditional
distributions {ps0}s0∈N whose domains consist of programs ≤
s0 bits in size, that is,

ps0 : A≤s0 → R

and satisfying ∑ ps0 = 1 and ps0(w) ≥ 0. The intent is that
ps0(w) gives the probability that someone working in the prob-
lem domain will set out to realize the particular (uncom-
pressed) program w, given that w is at most s0 bits long.
For this family of distributions to be compatible with one an-
other we require that ps0(w) = ps0+1(w | ‖w‖ ≤ s0), i.e., we
can get the distribution on length ≤ s0 programs by taking
a conditional probability on the distribution for length s0 + 1
programs. We do not presume that such distributions can be
effectively described.

In what follows we use the usual notation for expectation with
the implied assumption of s0 →∞; for example, if f : {0,1}∗→
R maps programs to real numbers, then by E[f (w)] we mean:

E
[

f (w)
]
≡ lim

s0→∞
∑

w:‖w‖≤s0

f (w)ps0(w)

if such a limit should exist. For example, a mean program
size E

[
‖w‖

]
may exist for a problem domain, but we do not

require nor expect this.

2.2 The entropy parameter H

A key, perhaps defining, feature of a problem domain is that
there is similarity of purpose in the programs people write.
We do not expect the distribution of programs written in a
problem domain to be uniform over all possible programs, but
rather concentrated on programs that solve certain classes of
problems typical for the domain. We formalize this intuition
by introducing a parameter H for problem domains measuring
how far their probability distribution departs from uniform.
This H is very similar to entropy rate from information theory,
and coincides if we are willing to assume programs are drawn
from a stationary stochastic process. When H = 1 the distri-
bution over programs is uniform, modelling extreme diversity
of software, with little opportunity for reuse. For H < 1 there
is some potential for reuse. In fact as we shall see shortly, we
may expect that up to a proportion 1−H of programs may be
reused from libraries.

Define the entropy of each distribution ps0 in the standard way

%
%
%

+

s bits

...

n
Library

6
5
4
3
2
1

Uncompressed program (without library)

Compressed program (with library)

≥ Hs bits

ComponentIdentifier

Figure 2. The basic scenario: programmers in a problem
domain set out to realize a program that can be repre-
sented in s bits when compiled without the use of a library.
By using library components, they are able to reduce the
size of the compiled program, down to an expected size of
≥ Hs bits.

(see, e.g., [7, 20]):

H(ps0) = ∑
w:‖w‖≤s0

−ps0(w) log2 ps0(w)

This is the expected number of bits required to represent a
program of size ≤ s0 in this domain. We are interested in
the limit behaviour of 1

|A≤s0 |H(ps0), akin to the entropy rate
of a random process. In general this limit may not exist —
there might be oscillations — so we need some weaker notion
of limit. We settle for a limsup, which gives an almost sure
upper bound on the limit behaviour.

Definition 1 (Entropy parameter). Define the entropy param-
eter H of a problem domain to be the greatest value that

1
|A≤s0 |H(ps0) attains infinitely often as s0 → ∞:

H = limsup
s0→∞

(
1

|A≤s0 |
H(ps0)

)
As a consequence of this definition we are guaranteed that
H(ps0)≤ s0H almost surely as s0 → ∞.

We cannot hope to calculate H from first principles except for
toy scenarios, but there is hope we might estimate it empiri-
cally. We introduce H primarily as a theoretical tool to model
problem domains in which people have great similarity of pur-
pose (H → 0) or diffuse interests (H → 1). The main impact
of H is the following.

Claim 2.1. In a problem domain with entropy parameter H, the
expected proportion of code that may be reused from a library is
at most 1−H.

This is a consequence of the Noiseless Coding Theorem of in-
formation theory (e.g., [1, §2.5]), which states that coding
random data with entropy H requires (on average) at least H
bits. Suppose an uncompressed program has size s ≤ s0. We
defined H so that H(ps0) ≤ sH almost surely, so we can com-
press programs to an expected size of at best sH by the Noise-
less Coding Theorem. Therefore the expected amount of code
saved by use of the library is at most (1−H)s, and it is reason-
able to equate this with the amount of code reused from the

13

library. An immediate implication is that blanket reuse pre-
scriptions such as “effective organizations reuse 70% of their
code from libraries” are unrealistic; reuse goals need to be
pegged to the problem domain’s value of H.

Figure 2 illustrates the scenario we consider in this paper:
programmers set out to implement the capabilities of some
uncompressed program of length s written without use of a
library, drawn from the distribution for the problem domain.
A programmer implements the program making use of the li-
brary, effectively “compressing” it. The expected size of the
compressed program is at least Hs bits, by the previous argu-
ments. The library consists of a set of components, each with
an identifier or codeword by which they are referred to. We
always take programs to be compiled, so as not to care about
the high compressibility of source representations.

2.2.1 Motifs and the AEP

One question we should like to answer is whether when H < 1
there are commonly occurring patterns or “motifs” in pro-
grams that we can put in libraries and reuse to compress
programs. If we are willing to assume that programs in a
problem domain behave as if excerpted from a stationary er-
godic source, then the Shannon-McMillan-Breiman theorem
(asymptotic equipartition property or AEP) [7, §15.7] en-
sures that when H < 1 there are commonly occurring finite
subsequences in programs that can be exploited, and indeed
that we can achieve optimal compression of programs merely
by having libraries of common instruction sequences. That
more complex software components prove necessary in prac-
tice suggests the stationary ergodic assumption is too strong,
and a weaker ergodic property is needed to account for the
emergence of motifs in software when H < 1. It is unclear yet
exactly what this property might be; in the remainder of this
paper we do not assume AEP.

2.3 Libraries maximize entropy

A truly great computer programmer is lazy, impa-
tient and full of hubris. Laziness drives one to work
very hard to avoid future work for a future self. —
Larry Wall

Programmers, so we read, are lazy— they write libraries to
capture commonly occurring abstractions so they do not have
to write them over and over again. The social processes that
drive programmers to develop libraries have an interesting
theoretical effect. We can view programmers contributing to
domain-specific libraries as collectively defining a system for
compressing programs in that domain. If there is a common
pattern, eventually someone will identify it and put it in a
library. Since the absence of common patterns in code is im-
plied by high entropy, we propose the following principle.

Principle 1 (Entropy maximization). Programmers develop
domain-specific libraries that minimize the amount of fre-
quently rewritten code for the problem domain. This tends to
maximize the entropy of compiled programs that use libraries.

As evidence for this principle, we show in Section 6 that the
rate at which library components are reused is empirically ob-

served to approach a maximum entropy configuration.1

In practice programmers have to strike a balance between the
succinctness of their programs and their readability; see, e.g.,
[11] for an elegant discussion of such tradeoffs. However, we
maintain that the drive toward terseness and factoring com-
mon patterns is a defining pressure on library development:
entropy is essentially a measure of communication efficiency,
and programmers edge as close to maximum entropy as they
can while maintaining source-code understandability.2

2.4 The Platonic library

In the early days of computing libraries held a hundred sub-
routines at most; these days it is common for computers to
have a hundred thousand subroutines available for reuse (cf.
Section 6). Let us suppose that as time goes on we shall con-
tinue to add components to our libraries as we discover use-
ful abstractions and algorithms. Our current libraries might
be viewed as a truncated version of some infinite (but count-
able) library toward which we are slowly converging. It is
convenient to pretend that this limit already exists as some in-
finite “Platonic library” for the problem domain, and that we
are merely discovering ever-larger fragments of it, recalling
Erdös’ book of divine mathematical proofs.3 Were we granted
access to the entire library, we might write software in a very
efficient way. We use the Platonic library as a device — a con-
venient fiction — to reason about how useful finite libraries
might be.

Infinite objects need to be treated with care. We shall not
assume that some “optimal infinite library” exists that is the
best possible such library. Nor shall we assume there is some
finite description or computable enumeration of its contents.
We merely assume that fragments of the Platonic library give
us snapshots of what shall be in our software libraries over
time.

2.5 Existence of reuse rates

Numerous metrics have been proposed for measuring reuse.
We focus on the reuse rate of a component, which we write
λ(n) and define as the expected rate at which references are
made to the nth library component in a compressed program.
The units of λ(n) are expected references per bit of compiled
code. We assume mean reuse rates exist in a problem domain,
in the following sense.

Assumption 1. Let Refsn(w) count the number of references to
the nth component in a compressed program w of size ≤ s0. We

1 Note that Principle 1 is not intended to appeal to the
maximum entropy principle as advocated by Jaynes, which
deals with maintaining uncertainty in inference.

2We re-emphasize that we are speaking of the entropy rate
of compiled programs; source representations are highly com-
pressible to support readability.

3A Platonic object is an abstract entity thought to dwell
in some realm outside spacetime. Our stance with respect to
software libraries echoes mathematical Platonism, that math-
ematical objects about which we reason exist in some ideal-
ized form outside the physical universe (see, e.g., [2]).

14

assume that

E
[
Refsn(w)

∣∣∣ ‖w‖= s
]
∼ λ(n)s+o(s) as s0 → ∞ (1)

where o(s) denotes some error term growing asymptotically
slower than s.

We unfortunately do not have a good sense of how to go from
the problem domain’s distributions ps0 on uncompressed pro-
grams to rates of components in compressed programs; this
is tied up with the ergodic process issues mentioned in Sec-
tion 2.2. We dodge the issue by simply assuming that the mean
rates λ(n) exist. This is not a demanding assumption; many
sensible random process models would imply Assumption 1,
for example modelling component uses as a renewal process
(see, e.g., [27, §3]).4

2.6 Ordering of library components

For convenience we shall suppose the library components are
arranged in decreasing order of expected reuse rate in the
problem domain: that is,

λ(n)≥ λ(n+1)

There are two reasons for this. The first is tidiness, so that
when we plot λ(n) vs n we see a monotone function and not
noise. The asymptotic bounds we derive on λ(n) do not rely
on this ordering. The second reason is that to derive bounds
on how well we might compress programs we need to assign
shorter identifiers to more frequently used components. This
is easiest to reason about if the Platonic library is sorted by
use frequency.5

3 Kolmogorov Complexity

Kolmogorov complexity, also known as Algorithmic Informa-
tion Theory, was founded in the 1960s by R. Solomonoff, G.
Chaitin, and A.N. Kolmogorov. We shall only make use of
some basic facts; for a more thorough introduction the survey
article [21] or the book [20] are recommended. The central
idea is simple: measure the ‘complexity’ of an object by the
length of the smallest program that generates it. This gener-
alizes to the study of description systems, that is, systems by
which we define or describe objects, of which programming
languages, logics, and descriptive set theory are prominent
examples. The source code of a program, for example, de-
scribes a program behaviour; a set of axioms describes a class
of mathematical structures. In the general case we have some
objects we wish to describe, and a description system φ that
maps from a description w (for us, a program) to objects. The
usual situation is to describe an object by exhibiting a pro-
gram that generates it; in this case we may also provide some
inputs to the program, which we shall call parameters. The

4 For readers familiar with coding theory we forestall con-
fusion by mentioning that the rates λ(n) are not the same
as the usual notion of probabilities over countable alphabets.
The rates λ(n) are drawn from compressed programs and so
already incorporate code lengths.

5Jeremiah Willcock made the useful suggestion that we
may regard the Platonic library as containing already every
possible component, and the only question is the order in
which they are placed.

Kolmogorov complexity of an object x in the description sys-
tem φ, relative to a parameter y is defined by:

Cφ(x | y) = min
w
{‖w‖ : φw(y) = x} (2)

In the case where the description system φ is a programming
language, we may read Eqn. (2) as finding the shortest pro-
gram that, given input parameter y, outputs x. The parame-
ter y does not contribute to the measured description length
Cφ(x | y). Without a parameter we have the simpler case
Cφ(x) = Cφ(x | ε) where ε is the empty string.

For example, we might choose the programming language
Java as our description system; then for some string x, its Kol-
mogorov complexity CJava(x) is the length of the shortest pro-
gram that outputs x. To determine whether use of a library L
offers a reduction in program size, we can consider the com-
bination of Java and the library L as a description system it-
self which we might call Java+L, and compare CJava+L(x) to
CJava(x).

A very useful insight is that the choice of language doesn’t
much matter.

Fact 3.1 (Invariance [20, §2.1]). There exists a universal ma-
chine U such that if φ is some effective description system (e.g.,
a programming language) then there is a constant c such that
CU (x)≤Cφ(x)+ c for any x.

That is, the universal machine U is optimal up to a constant
factor. For this reason the subscript U can be dropped and one
can write C(x) for the Kolmogorov complexity of x, knowing
it is only defined up to some constant factor.6

Some strings have very short descriptions: a string of a trillion
zeros may be produced by a short program. Others require
descriptions as long as the strings themselves, for instance a
million digit binary string obtained from a physical random
bit generation device.7 A recurrent theme in Kolmogorov
complexity is that there are never enough descriptions to go
around so as to give short descriptions to most objects. In
the case where both the objects and their descriptions are bi-
nary strings, we have the following well-known result that the
probability we can save more than a constant number of bits
in compressing randomly selected strings is zero.

Fact 3.2 (Incompressibility [20, §2.2]). Suppose g : N → N
is an integer function with g(n) > 0 and g ∈ ω(1), that is,
limn→∞ g(n) = ∞. Let x be a string chosen uniformly at random.
Then almost surely:

Cφ(x)≥ ‖x‖−g
(
‖x‖

)
(3)

Fact 3.2 implies, for example, that one cannot devise a coding
system that compresses strings by even log logn or α−1(n,n)
(inverse Ackermann) bits with nonzero probability. The proof
of Fact 3.2 uses counting arguments only, with no appeal to
computability of the description system.8 Therefore the in-

6There is an easy way to see why this is true: if φ is a
programming language, then we can write a φ-interpreter for
the universal machine U . We can then take any program for
φ, prepend the interpreter, and it becomes a U-program. The
constant mentioned reflects the size of such an interpreter.

7 Unless you are rather lucky.
8 There are 2n−g(n)+1 − 1 descriptions of length at most

15

equality (3) applies to any description system φ, even descrip-
tion systems that are not computable. For example, Fact 3.2
even applies if we permit ourselves to use an infinite, not com-
putably enumerable library as we described in Section 2.4.
However, it does not apply in the case where there is a nonuni-
form distribution, as in problem domains where H < 1.

In the remainder of this paper we shall assume compiled pro-
grams are incompressible in the sense of Fact 3.2.

Proposition 3.1. Compiled C programs on existing major ar-
chitectures are almost surely Kolmogorov incompressible.

Note that “almost surely Kolmogorov incompressible” does not
imply anything about the compressibility of typical compiled
programs for a problem domain. Rather, it means that if one
chooses a valid compiled program uniformly at random, with
probability 1 it cannot be replaced by a shorter program with
the same behaviour. In subsequent sections we investigate
problem domains where there is a nonuniform distribution on
programs, i.e., H < 1, where the situation is rosier.

We sketch a proof of Proposition 3.1, showing that the num-
ber of distinct behaviours described by compiled programs of
s bits grows as ∼ 2s on current machines, which implies com-
piled programs are almost surely (Kolmogorov) incompress-
ible. The C language has the useful ability to incorporate
chunks of binary data in a program. For example, the bi-
nary string z = 0110100111011010 may be encoded by the C
declaration

unsigned char z[2] = {0x69,0xda};

Moreover, such arrays are laid out as contiguous binary data
in the compiled program, so that a binary string of length m
bytes requires exactly m bytes in the compiled program. We
can package such an array with a short program of constant
size that reads the binary string from memory and outputs it
to the console. Every binary string of m bytes may be encoded
by such a compiled program of size at most c+m bytes, where
c is a constant representing the overhead of a read-print loop.
Every such program yields a unique behaviour, so the number
of distinct behaviours of compiled programs of s bits is ∼ 2s.
We can then adapt the argument used to prove Fact 3.2, re-
placing strings by compiled programs, which shows compiled
C programs are almost surely incompressible.

Note that uncompiled programs are highly compressible. For
example, C language source code may not contain certain
bytes (e.g., control characters) such as the null character 0x00.
This means they can be compressed by a factor of (at least)

1
256 ∼ 0.39%. Restricting our attention to compiled programs
is crucial.9

n− g(n), and 2n+1 − 1 strings of length at most n. There-
fore the fraction of strings compressible by g(n) bits is at most
2n−g(n)+1−1

2n+1−1 , which behaves in the limit as 2−g(n). If g∈w(1) this
value vanishes as n→∞, so Cφ(x)≥ ‖x‖−g(‖x‖) almost surely.

9An alternative would be to deal with indices of programs
in the usual sense of computability theory, where we equate
a program with its position in some effective enumeration
of valid source-language programs. However, working with
compiled programs has the additional benefit of brushing
aside issues such as identifier lengths in source code, which
tend to be unnecessarily long to aid readability.

4 A bound on reuse rates

In this section we derive a bound on the reuse rate λ(n) at
which the nth library component is reused in ‘compressed’ pro-
grams written with use of a library.

4.1 Coding of references

We need some rudimentary accounting of what we gain and
lose by use of the library: we save some by using a library
component, at the cost of having to refer to it. Let us first
consider the cost of referring to components.

We presume that unique identifiers are assigned to library
components; we call these codewords. Let c(n) be the binary
codeword for the nth library component, and ‖c(n)‖ its length.
Optimal strategies such as Shannon-Fano or Huffman codes
assign shortest codewords to the most frequently needed com-
ponents. Since our library is sorted in order of use frequency
(Section 2.6), we may presume that ‖c(n)‖ ≤ ‖c(n + 1)‖, i.e.,
codeword lengths are nondecreasing as we go down the list
of components.

In what follows we want to make asymptotic arguments, and
fixing an identifier size (e.g., 64 bits) would lead to wildly
wrong conclusions.10 Instead we require that the identifier
size grows with the number of components, albeit slowly. That
‖c(n)‖ ≥ log2 n follows from the pigeonhole principle. Having
identifiers of length only log2 n leads to difficulties, because
they are not uniquely decodable. That is, if I am presented
with a string of such identifiers I have no way to tell where one
identifier stops and the next starts. (This does not arise in cur-
rent architectures because of fixed word size, but as we said,
care is needed in asymptotic arguments). A more accurate re-
quirement is the following, which draws on Kraft’s inequality
that uniquely decodable codes must satisfy ∑

∞
n=1 2−‖c(n)‖ ≤ 1.

Proposition 4.1. For identifiers to be uniquely decodable,

‖c(n)‖ ≥ log+ n

where log+ n = logn+ log logn+ log loglogn+ · · · and the sum is
taken only over the positive real terms.

We omit the proof; see e.g., [26, §2.2.4] or [20, §1.11.2] (in
particular problem 1.11.13).

4.2 Derivation of reuse rate bound

We now derive an asymptotic upper bound on the rates λ(n)
at which library components may be reused. We do this under
the assumption that each time a library component is used in
a program, the same identifier is used to refer to it, i.e., there
is no recoding of identifiers.11 Our argument follows standard

10If we fix memory addresses to be representable in 64 bits,
then the time to search an acyclic linked list is O(1) since there
are at most 264 steps the algorithm must go through.

11 There are two reasons for this assumption. (1) On the
architectures from which we collect empirical data, there is
no recoding of identifiers in programs. (2) The reason one
might want to recode identifiers is to save space by introduc-
ing shorter aliases for components for use within the program,
after the initial reference. However, this only saves space if a

16

lines [25] but adapted to coding of library references under
the model laid out in Section 2.

Theorem 4.1. Without recoding of identifiers, the asymptotic
reuse rates λ(n) must satisfy λ(n)≺ (n logn log+ n)−1.

PROOF. We count the size of the references to library com-
ponents within compressed programs (i.e., those written with
use of a library). Consider programs of length at most s. As
s → ∞, the expected number of occurrences of the nth com-
ponent tends to λ(n)s + o(s) under Assumption 1. Referring
to the nth component requires at least log+ n bits (Proposi-
tion 4.1). We need only consider components whose identifier
length is less than s, since identifiers longer than the program
would not fit. Therefore we consider only up to component
number 2s since log+ 2s ≥ s.

The expected total size of all the references to components is
then at least:

2s

∑
n=1

(
λ(n)s+o(s)

)︸ ︷︷ ︸
refs

log+ n︸ ︷︷ ︸
ref size

The references to components are contained within the pro-
gram, and therefore their total size must be less than s, the
size of the program. Therefore we have an inequality:12

2s

∑
n=1

(
λ(n)s+o(s)

)
log+ n≤ s (4)

Dividing through by s and taking the limit as s→ ∞,

lim
s→∞

2s

∑
n=1

1
s

(
λ(n)s+o(s)

)
log+ n≤ 1 (5)

Since lims→∞
1
s o(s) = 0 by definition,13

∞

∑
n=1

λ(n) log+ n≤ 1 (6)

We now consider conditions under which this sum converges.
(Section A.1 summarizes the asymptotic notations used here.)
We argue using Proposition A.1, using a diverging series to
bound the terms of Eqn. (6). The simple argument is to note
that the harmonic series diverges, and therefore the terms of
Eqn. (6) must grow slower than this, so λ(n) log+ n ≺ 1

n , or
λ(n) ≺ 1

n log+ n . However, this bound is quite loose. A more

component is more likely to be used again given it is used
once. While this is intuitively true of real programs, it is false
under a maximum entropy assumption (Section 2.3): in an
encoding that maximizes entropy, the sequence of identifiers
in a program behaves statistically as if independent and iden-
tically distributed.

12 Inequality (4) becomes an equation if we consider pro-
grams to consist solely of a sequence of component references,
with no control flow or other distractions. This is possible by
building components and programs from combinators, which
can be made self-delimiting [20, §3.2]. This provides a theo-
retically elegant framework, if not entirely intuitive.

13Recall that f ∈ o(g) means limx→∞
f (x)
g(x) = 0.

slowly diverging series is ∑n
1

n logn . Using this,

λ(n) log+ n≺ 1
n logn

or,

λ(n)≺ 1
n logn log+ n

(7)

This completes the proof.

The bound of Theorem 4.1 is not tight. No tightest bound is
possible using this line of argument since there is no slow-
est diverging sequence with which to bound a convergent
sequence, a classical result due to Niels Abel. However, the
bound is tight to within a factor nε for any ε > 0.

Entropy maximization and Zipf’s Law. Theorem 4.1 pro-
vides an upper bound on λ(n), but it could well be the case
that λ(n) ∼ 1

n3 , for example. Why do the curves we see in
practice (e.g., Figure 1) hug the bound of Theorem 4.1? We
believe the answer to why we observe λ(n) ≈ 1

n is due to
the tendency of libraries to evolve so that programmers can
write as little code as possible, which in turn implies evolu-
tion toward maximum entropy in compiled code (Principle 1).
The entropy rate of component references is maximized when
λ(n)≈ 1

n (see, e.g., [13]).

5 Reuse potential

In the following sections we consider the possibilities of code
reuse in two cases: (1) when H = 1 and we have a uniform
distribution on programs; (2) when 0 < H < 1 and we have
some degree of compressibility in the problem domain. The
case H = 0 is left for future work.

5.1 The uniform case: H = 1

The uniform case of H = 1, in which every program is equally
likely to be implemented, reduces the scenario to classical Kol-
mogorov complexity with a uniform distribution on programs.
It has some surprising properties that suggest H = 1 to be an
unlikely scenario for real problem domains.

Our first result concerns the number of library components
we might expect to use in a program. Let N(s) be a random
variable indicating for a program of uncompressed size s the
number of components whose use reduces program size. Sur-
prisingly, as program size increases the expected number of
components that reduce program size is bounded above by a
constant.

Theorem 5.1. If H = 1 there exists a constant ncrit independent
of program size s such that N(s)≤ ncrit almost surely.

PROOF. Suppose each component used saved at least 1 bit.
If lims→∞ E[N(s)] were unbounded, use of the library could
compress random programs by an unbounded amount, con-
tradicting incompressibility (Fact 3.2).

This has a simple corollary concerning the potential for code
reuse.

17

Corollary 5.1. When H = 1 the expected proportion of a pro-
gram that can be reused from libraries tends to zero as program
size increases.

Because of these results, the case H = 1 is somewhat uninter-
esting and does not seem to model real life, where we know
libraries are useful and let us reduce the size of programs.
In the next sections we examine the more interesting case of
0 < H < 1, where we can compress programs, even ones that
are (Kolmogorov) incompressible, by use of a library.

5.2 The nonuniform case: 0 < H < 1

More interesting than the uniform case is the situation when
0 < H < 1, which implies a nonuniform distribution on pro-
grams. This models problem domains that have some poten-
tial for code reuse, and libraries are of central importance in
reducing program size. Recall from Section 2.2 that we can
expect to compress programs in such domains from uncom-
pressed size s to at best Hs by use of a library. A standard
result from information theory can be adapted to show this
bound is achievable, at least in a theoretical sense.

Claim 5.1. There exists a library with which uncompressed pro-
grams of size s can be compressed to expected size ∼ Hs.

The proof of this is not particularly illustrative and we banish
it to a footnote.14 The gist is to place every possible pro-
gram into the library as a “component,” but ordering them so
that the most likely programs for the problem domain come
soonest in the library order and thus are assigned the short-
est codewords. This is a wildly impractical construction but
demonstrates the claim. In practice we decompose software
into reusable chunks that we put in libraries; that reusable
chunks exist suggests an ergodic property (see Section 2.2.1).

Unlike the situation of H = 1 where the number of compo-
nents useful for a program was at most a constant, when
0 < H < 1 we have a much more pleasing situation: the num-
ber of useful components increases steadily as we increase
program size.

14 Proof. We first describe an encoding that compresses pro-
grams to achieve an expected size Hs, and then explain how
to construct the library. Recall the Shannon-Fano code [20,
§1.11] allows a finite distribution with entropy H to be coded
so that the expected codeword length is≤H +1. We adapt this
as follows. For each s0 ∈N, we produce a Shannon-Fano code-
book for all programs of length ≤ s0 achieving average code-
word size ≤ H(ps0)+ 1 for the distribution ps0 (Section 2.2).
By definition H(ps0) ≤ Hs almost surely, so this achieves a
compression ratio of H almost surely for each s0 as s0 →∞. To
combine all the codebooks into one, we preface a compressed
program with an encoding of its uncompressed length, which
we use to select the appropriate codebook. This can be done
by adding to each codeword c + 2logs bits for some constant
c, which is negligible with respect to Hs when H > 0. There-
fore this encoding achieves expected program size ∼ Hs. We
use the codebook as the library: each component identifier is
a Shannon-Fano code, each component is a program. Note
that the reuse rates vanish for this construction, i.e., λ(n)→ 0
as s0 → ∞, and so the bound of Theorem 4.1 is trivially satis-
fied.

5.2.1 The incompleteness of libraries

Under reasonable assumptions we prove that no finite library
can be complete: there are always more components we can
add to the library that will allow us increase reuse and make
programs shorter. To make this work we need to settle a subtle
interplay between the Kolmogorov complexity notion of com-
pressibility (there is a shorter program doing the same thing)
and the information theoretic notion of compressibility (low
entropy over an ensemble of programs). Now because we
defined probability distributions on programs (rather than be-
haviours), we run into the possibility that the probability dis-
tribution might weight heavily programs that are Kolmogorov
compressible, i.e., the distribution might prefer programs w
with ‖w‖ >> C(w). For example, a problem domain might
have programs that are usually compressible to half their size
not because the probability distribution focuses on a particu-
lar class of problems, but because we artificially defined ps0

to select only those programs that are twice as large as they
might be (for example, we might pad every likely program
with many nop instructions.) To avoid this difficulty we re-
quire the distributions be honest in the following sense.

Definition 2 (Honesty). We say the distributions ps0 for a
problem domain are honest if the programs are Kolmogorov
incompressible. Specifically,

E
[

C(w)
‖w‖

]
→ 1 as s0 → ∞ (8)

where the expectation is taken over the distributions ps0 . This
requires that the probability distribution does not artificially
prefer verbose programs with ‖w‖>> C(w).

If the distribution for a problem domain is honest and has H <
1, the programs are expected to be information-theoretically
compressible by use of a library, but not Kolmogorov compress-
ible. In other words, our ability to compress programs is due
to a “focus” on a class of problems of interest to the domain,
not just an artificial selection of overly-verbose programs.

Inspired by Euclid’s proof that there are infinitely many
primes, with the honesty assumption we can prove there are
infinitely many reusable software components that make pro-
grams shorter.

First we need two smaller pieces of the puzzle.

Lemma 5.1. If H > 0 then for any finite k, Pr(‖w‖ ≤ k)→ 0 as
s0 → ∞.

PROOF. We know from definition of H that H(ps0) = Hs0 in-
finitely many times as s0 → ∞ (Section 2.2). Consider how
probability must be distributed among programs of different
lengths to account for this much entropy. We try to account
for as much entropy as we can by short programs, setting a
uniform distribution p(w) = 1

2Hs0
on the first 2Hs0 programs—

this is the fewest number of programs that would produce this
much entropy. To programs of length ≤ k we can account for

k

∑
i=0

2i ·
(
− 1

2Hs0
log

1
2Hs0

)
∼ 2k+1−Hs0 Hs0

bits of entropy. But as s0 → ∞, 2k+1−Hs0 Hs0 → 0 so we can
account for none of the entropy by programs of length ≤ k.
Therefore Pr(‖w‖ ≤ k)→ 0 as s0 → ∞.

18

Lemma 5.2. If H > 0 then E
[

1
‖w‖

]
→ 0 as s0 → ∞.

PROOF. Suppose E
[

1
‖w‖

]
= c for some c > 0. Then there

would be a finite probability that ‖w‖ ≤ c−1 as s0 →∞, contra-
dicting Lemma 5.1.

Now we are ready for the main theorem, which proves no
finite library can be “complete” in the sense of achieving a
compression ratio of H when 0 < H < 1.

Theorem 5.2 (Library Incompleteness). If a problem domain
has 0 < H < 1 and honest distributions (Defn. 2), no finite li-
brary can achieve an asymptotic compression ratio of H.

PROOF. Suppose a finite library of components achieves a
compression factor 1− ε, with optimal compression when
1− ε = H. Call the programming language φ and the library
L. We can write an interpreter for φ that incorporates the li-
brary L; since the library is finite this is a finite program. We
call the resulting machine model φ+L. Consider Kolmogorov
complexity for this machine, writing Cφ+L(w) for the size of
the smallest φ-program using L that has the same behaviour
as w. Saying the machine φ+L achieves the compression fac-
tor 1− ε implies

E
[

Cφ+L(w)
‖w‖

]
= 1− ε (9)

From the invariance theorem of Kolmogorov complexity
(Fact 3.1) we have that there exists a constant c such that

C(w)≤Cφ+L(w)+ c (10)

for every program w. Dividing through by ‖w‖ and taking
expectation,

E
[

C(w)
‖w‖

]
≤ E

[
Cφ+L(w)
‖w‖

]
︸ ︷︷ ︸

=1−ε

+E
[

c
‖w‖

]
(11)

From honesty E
[

C(w)
‖w‖

]
→ 1, and from Lemma 5.2 we have

E
[

c
‖w‖

]
→ 0. Therefore (11) is, in the limit as s0 → ∞:

1≤ (1− ε)+0

For this inequality to hold, ε→ 0 for any finite library. There-
fore no finite library can achieve an asymptotic compression
ratio < 1 when the distributions are honest.

Claim 5.1 showed that an infinite library can achieve ex-
pected size ∼ Hs; Theorem 5.2 shows that no finite library
can. Therefore only infinite libraries can compress programs
of size s to expected size Hs. However, this is an asymptotic
argument; if we restrict ourselves to programs of size ≤ s0 for
some fixed s0, finite libraries can approach a compression ratio
of Hs by including more and more components. Doug Gre-
gor suggested calling Theorem 5.2 the Full Employment Theo-
rem for Library Writers, after Andrew Appel’s boon to compiler
writers. Theorem 5.2 has a straightforward implication: no fi-
nite library can be complete; there are always more useful
components to add. In practice we have a tradeoff between
the utility of larger libraries and the economic cost of produc-
ing them; this suggests the importance of designing libraries
for extensibility.

A minor change to the above proof yields a similar but slightly
stronger result.

Corollary 5.2. If a problem domain has 0 < H < 1 and honest
distributions, no computably enumerable library can achieve a
compression ratio of H.

PROOF. Repeat the proof of Theorem 5.2, replacing “finite li-
brary” with “c.e. library.” In particular the choice of a c.e.
library guarantees that the interpreter for φ+L is a finite pro-
gram: whenever a library subroutine is required, it can be
generated from the program enumerating the library.

We may casually equate “not computably enumerable” with
“requires human creativity.” Corollary 5.2 indicates that the
process of discovering new and useful library components is
not a process that can can be fully automated.

5.2.2 Size of library components.

We now consider how big library components might be. If we
want to achieve the strong reuse vision of “programming by
wiring together large components,” this suggests that compo-
nents ought to be quite large compared to the wiring. The
following theorem sheds light on the conditions when this is
possible.

Let S(n) denote the expected amount of code (in bits) saved
per use of the nth component. We consider the case when
λ(n) ∼ 1

n‖c(n)‖ f (n) , where ‖c(n)‖ is the codeword (identifier)
length, and f (n) is a function f ∈ o(nε) for ε > 0 that ensures
convergence (cf. Section 4.2). This coincides with a Zipf-style
law as observed in practice (Figure 1).

Theorem 5.3. If a library achieves a compression factor of H >
0 in an honest problem domain, then S(n)∼ 1−H

H ·o(nε) for any
ε > 0.

PROOF. Summing over all components, the total code saved
is:

∞

∑
n=1

(
λ(n)Hs+o(Hs)

)︸ ︷︷ ︸
expected # uses

· S(n)︸︷︷︸
savings per use

= (1−H)s︸ ︷︷ ︸
total savings

(12)

Dividing through by Hs and taking the limit as s → ∞, and
substituting λ(n)∼ 1

n‖c(n)‖ f (n) ,

∞

∑
n=1

1
n‖c(n)‖ f (n)

S(n) =
1−H

H

Now if S(n)∼ na for some constant a > 0 then the sum would
diverge. Therefore S(n) is not polynomial in n; in fact for the
sum to converge we must have S(n)≺ f (n) which means S(n)
behaves asymptotically as

S(n)∼ 1−H
H

o(nε)

where o(nε) denotes some subpolynomial function.

See also Figure 3. Note that if the components in the library
are unique, then S(n)≥ logn by pigeonhole.

Strong reuse? The interpretation of Theorem 5.3 is fairly in-
tuitive. Roughly it says the savings we can expect per compo-

19

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

H
0

(1
−

H
0)/

H
0, c

od
e

sa
ve

d
pe

r
co

m
po

ne
nt

 u
se

Very little reuse

Weak reuse

Strong reuse

Figure 3. Plot of 1−H
H versus H, indicating how much code is saved, proportionately, per component use. When H → 1

there is almost no reuse; H → 0 coincides with the “strong reuse” ideal of wiring together large components. In between
is weak reuse, with moderate amounts of code drawn from libraries.

nent are linear in the size of the component identifier. Which
is to say, we should expect savings for the nth component to
grow roughly as log+ n. This is consistent with findings in the
reuse literature that small components are much more likely
to be reused. The important factor here is the multiplier 1−H

H .
As H → 0, this multiplier becomes arbitrarily large. This sug-
gests that “strong reuse” (Section 1) corresponds to the re-
gion H → 0. For example, if programs in a problem domain
are thought to be solvable by wiring together components that
are (say) 1000 times bigger than the wiring itself, this suggests
1−H

H ≈ 105 or H ≈ 0.001. The key result is that whether one is
able to achieve strong reuse depends critically on the param-
eter H — which measures how much diversity there is in the
problem domain.

6 Experimental data collection

Preliminary empirical data was collected from three large
Unix installations. The problem domain is not particularly
well-defined, but is rather “the mishmash of things one wants
to do on a typical research Unix machine.” On the SunOS and
Mac OS X machines we located every shared object and used
the unix commands nm or objdump to obtain a listing of the
relocatable symbols (i.e., references to subroutines in shared
libraries). For the Linux machine, a more sophisticated ap-
proach was used that involved disassembling every executable
object and decoding the PLT and GOT tables for shared library
calls. For this reason the Linux data is much more fine-grained
and reliable; for example, our data set for Linux includes the
frequencies of all the x86 machine instructions, in addition to

almost a half-million subroutines.

Operating System # Objects # Components
Linux (SuSE) 12136 455716
SunOS 23774 110306
Mac OS X 2334 37677

We counted the number of references to each component,
sorted these by frequency, and this data is plotted in Figure 1.
The observed counts match nicely the asymptotic prediction
made in Section 4.2 (the family of curves cn−1 is shown as dot-
ted lines). To account for machine instructions, which are not
included in the tally for the Mac OS X and SunOS machines
but constitute by far the most frequently occurring software
components, we started numbering the components for these
machines at n = 50. Without this adjustment the rates have a
characteristic “flat top” and then rapidly converge to n−1 lines;
this is an artifact of the log-log scale.

The pronounced “steps” in the data for large n occur because
there are many rarely-used subroutines with only a few refer-
ences; this is typical of such plots (see, e.g., [25]).

Another prediction that may follow from our model is that the
number of distinct components used in a program should ap-
proach a normal distribution: under maximum entropy condi-
tions the use of components is statistically independent, and
so the central limit theorem applies. This is reminiscent of
the Erdös-Kac theorem [8] that the number of prime factors
of integers converges to a normal distribution. Figure 4 shows
some preliminary results that support this result, drawn from

20

10
3

10
4

10
5

10
6

10
7

10
8

10
0

10
1

10
2

10
3

10
4

10
5

Software size (bits)

N
um

be
r

of
 d

is
tin

ct
 li

br
ar

y
su

br
ou

tin
es

(a) Scatter-plot of the number of subroutine references

0 0.2 0.4 0.6 0.8 1 1.2

x 10
−3

0

1000

2000

3000

4000

5000

6000

Normalized number of references

N
um

be
r

of
 p

ro
gr

am
s

(b) Distribution histogram

1 2 3 4 5 6 7 8 9 10

x 10
−4

0

20

40

60

80

100

120

140

160

180

Normalized number of references

N
um

be
r

of
 p

ro
gr

am
s

(c) Distribution for inset box

Figure 4. Data suggesting a library analogue of the Erdös-Kac theorem. (a) A scatter-plot showing the number of distinct
library subroutines used vs. software size for the Linux RPM data. (b) Histogram for the number of references, normalized
(see text). (c) Histogram only for the inset box of (a), illustrating an Erdös-Kac-style normal distribution for the number of
components used in software. Such plots might provide a useful tool for assessing the extent of reuse vs. ideal predictions
from a model.

21

the SuSE Linux data. The number of component references
have been normalized by an estimated variance of σ2 = cs2

where s is the program size. Subfigure (c) shows a sugges-
tively shaped distribution for the inset box of (a), a region
where there is good “saturation” of the problem domain with
programs.

Our preliminary data demonstrates a Heaps’ style law for vo-
cabulary growth [15, §7.5]: the number of unique compo-
nents encountered in examining the first s bytes of the corpus
grows roughly as a power law sα with α ≈ 0.8. We have not
found a satisfactory theoretical explanation.

7 Conclusion

We have developed a theoretical model of reuse libraries that
provides good agreement, we feel, with our intuitions, the lit-
erature, and the preliminary experimental data we have col-
lected on reuse on Unix machines. Much of what we have
done has served to emphasize the importance of this one
quantity, H, the entropy rate we associate with a problem do-
main. It determines if we can have strong reuse (H → 0), or
whether we can have weak reuse (0 < H < 1), and how much
code we might be able to reuse from libraries: at most 1−H.

We have shown that libraries allow us to “compress the in-
compressible,” reducing the size of programs that are Kolmo-
gorov-incompressible by taking advantage of the commonal-
ity exhibited by programs within a problem domain. We have
also shown that libraries are essentially incomplete, and there
will always be room for more useful components in any prob-
lem domain.

The arguments made here are quite general and might adapt
easily to other description systems, for example, the reuse of
abstractions, lemmas and theorems in mathematical proofs.

8 Acknowledgments

This paper benefited immeasurably from discussions with my
colleagues at Indiana University Bloomington. In particu-
lar I thank Andrew Lumsdaine, Chris Mueller, Jeremy Siek,
Jeremiah Willcock, Douglas Gregor, Matthew Liggett, Kyle
Ross, and Brian Barrett for their valuable suggestions. I thank
Harald Hammerström for letting me disappear with his copy
of Li and Vitányi [20] for most of a year.

9 References

[1] Robert Ash. Information Theory. John Wiley & Sons,
New York, 3 edition, 1967.

[2] Mark Balaguer. Platonism in Metaphysics. In Edward N.
Zalta, editor, The Stanford Encyclopedia of Philosophy.
Summer 2004.

[3] Victor R. Basili, Lionel C. Briand, and Walcélio L. Melo.
How reuse influences productivity in object-oriented
systems. Commun. ACM, 39(10):104–116, 1996.

[4] S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On the
theory of average case complexity. Journal of Computer
and System Sciences, 44(2):193–219, April 1992.

[5] Daniel M. Berry. A new methodology for generating test
cases for a programming language compiler. SIGPLAN
Not., 18(2):46–56, 1983.

[6] Kevin J. Compton. 0–1 laws in logic and combinatorics.
In I. Rival, editor, Proceedings NATO Advanced Study In-
stitute on Algorithms and Order, pages 353–383, Dor-
drecht, 1988. Reidel.

[7] Thomas M. Cover and Joy A. Thomas. Elements of In-
formation Theory. Wiley Series in Telecommunications.
John Wiley & Sons, 1991.

[8] P. Erdös and M. Kac. The Gaussian law of errors in the
theory of additive number theoretic functions. Amer. J.
Math., 62:738–742, 1940.

[9] William B. Frakes and Christopher J. Fox. Quality im-
provement using a software reuse failure modes model.
IEEE Transactions on Software Engineering, 22(4):274–
279, April 1996.

[10] Ronald L. Graham, Donald E. Knuth, and Oren Patash-
nik. Concrete Mathematics: A Foundation for Computer
Science. Addison-Wesley, Reading, MA, USA, second edi-
tion, 1994.

[11] T. R. G. Green. Cognitive dimensions of notations. In
Proceedings of the HCI’89 Conference on People and Com-
puters V, Cognitive Ergonomics, pages 443–460, 1989.

[12] M. L. Griss. Software reuse: From library to factory. IBM
Systems Journal, 32(4):548–566, 1993.

[13] P. Harremöes and F. Topsøe. Maximum entropy funda-
mentals. Entropy, 3(3):191–226, 2001.

[14] Ahmed E. Hassan and Richard C. Holt. Studying the
chaos of code development. In WCRE ’03: Proceedings
of the 10th Working Conference on Reverse Engineering,
page 123, Washington, DC, USA, 2003. IEEE Computer
Society.

[15] J. Heaps. Information Retrieval–Computational and The-
oretical Aspects. Academic Press, Inc., New York, NY,
1978.

[16] Charles W. Krueger. Software reuse. ACM Comput. Surv.,
24(2):131–183, 1992.

[17] D. Kuck. The Structure of Computers and Computations,
Volume 1. John Wiley and Sons, New York, NY, 1978.

[18] A. Laemmel and M. Shooman. Statistical (natural) lan-
guage theory and computer program complexity. Tech-
nical Report POLY/EE/E0-76-020, Dept of Electrical En-
gineering and Electrophysics, Polytechnic Institute of
New York, Brooklyn, August 15 1977.

[19] Mario Latendresse and Marc Feeley. Generation of fast
interpreters for Huffman compressed bytecode. In IVME
’03: Proceedings of the 2003 workshop on Interpreters,
virtual machines and emulators, pages 32–40, New York,
NY, USA, 2003. ACM Press.

[20] M. Li and P. Vitányi. An introduction to Kolmogorov com-
plexity and its applications. Springer-Verlag, New York,
2nd edition, 1997.

[21] M. Li and P. M. B. Vitányi. Kolmogorov complexity and
its applications. In Jan van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume A: Algorithms
and Complexity. Elsevier, New York, NY, USA, 1990.

22

[22] Wentian Li. Bibliography on Zipf’s Law, 2005.
http://www.nslij-genetics.org/wli/zipf/index.html.

[23] Parastoo Mohagheghi, Reidar Conradi, Ole M. Killi, and
Henrik Schwarz. An empirical study of software reuse
vs. defect-density and stability. In ICSE ’04: Proceedings
of the 26th International Conference on Software Engi-
neering, pages 282–292, Washington, DC, USA, 2004.
IEEE Computer Society.

[24] Jeffrey S. Poulin. Measuring Software Reuse: Principles,
Practices, and Economic Models. Addison-Wesley, 1997.

[25] David M. W. Powers. Applications and explanations of
Zipf’s law. In Jill Burstein and Claudia Leacock, editors,
Proceedings of the Joint Conference on New Methods in
Language Processing and Computational Language Learn-
ing, pages 151–160. Association for Computational Lin-
guistics, Somerset, New Jersey, 1998.

[26] Jorma Rissanen. Stochastic Complexity in Statistical In-
quiry, volume 15 of Series in Computer Science. World
Scientific, 1989.

[27] Sheldon M. Ross. Stochastic Processes. John Wiley and
Sons; New York, NY, 2nd edition, 1996.

[28] Jeffrey Scott Vitter and Philippe Flajolet. Average-case
analysis of algorithms and data structures. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Sci-
ence, volume A: Algorithms and Complexity, chapter 9,
pages 431–524. North Holland, 1990.

[29] David Barkley Wortman. A study of language directed
computer design. PhD thesis, Stanford University, 1973.

A Background

A.1 Asymptotics

Here we recall briefly some facts and notations concerning
asymptotic behaviour of functions and series. For a more de-
tailed exposition we suggest [10].

Asymptotic notations. For positive functions f (n) and g(n),
we make use of these notations for asymptotic behaviour:

f (n)∼ g(n) ⇐⇒ lim
n→∞

f (n)
g(n)

= 1 (13)

f (n)≺ g(n) ⇐⇒ lim
n→∞

f (n)
g(n)

= 0 (14)

f (n)� g(n) ⇐⇒ ∃c ∈ R . lim
n→∞

f (n)
g(n)

= c (15)

The “big-O” style of notation f ∈ o(g) is equivalent to f (n) ≺
g(n). When we write h(n)∼ g(n)+o(n2) we mean there exists
some function f ∈ o(n2) such that h(n)∼ g(n)+ f (n).

Series and their convergence. A series ∑
∞
i=1 ai is convergent

when limN→∞ ∑
N
i=1 ai exists in the standard reals; otherwise it

is divergent. The Harmonic series hn = 1
n is divergent, since

∑
∞
i=0 hi = 1+ 1

2 + 1
3 + · · · fails to converge.

We shall make use of the following key fact for bounding con-
vergent sequences.

Fact A.1. Let an,bn be positive sequences. If ∑
∞
n=1 an converges

and ∑
∞
n=1 bn diverges, then an ≺ bn.

Proposition A.1 is useful to establish a bound on the asymp-
totic growth of a sequence: for example, if ∑

∞
n=1 an must con-

verge, then an ≺ 1
n since the harmonic series diverges.

23

Advanced Programming Techniques
Applied to CGAL’s Arrangement Package∗

Ron Wein, Efi Fogel, Baruch Zukerman, and Dan Halperin

School of Computer Science Tel-Aviv University, Israel

{wein, efif, baruchzu, danha}@post.tau.ac.il

Abstract

Arrangements of planar curves are fundamental structures in com-
putational geometry. Recently, the arrangement package ofCGAL,
the Computational Geometry Algorithms Library, has been re-
designed and re-implemented exploiting several advanced program-
ming techniques. The resulting software package, which constructs
and maintains planar arrangements, is easier to use, to extend, and
to adapt to a variety of applications, is more efficient space- and
time-wise, and is more robust. The implementation is complete in
the sense that it handles degenerate input, and it produces exact
results. In this paper we describe how various programming tech-
niques were used to accomplish specific tasks within the context of
Computational Geometry in general and Arrangements in particu-
lar. A large set of benchmarks assured the successful applications
of the adverted programming techniques. The results of a small
sample are reported at the end of this article.

Categories and Subject Descriptors

D.2.11 [Software Architectures]: Patterns; D.1.5 [Object-
oriented Programming]

General Terms

Computational geometry, CGAL, arrangements, generic program-
ming, design patterns

1 Introduction

Given a setC of planar curves, thearrangementA (C) is the sub-
division of the plane induced by the curves inC into maximally
connected cells. The cells can be 0-dimensional (vertices), 1-
dimensional (edges), or 2-dimensional (faces). Theplanar mapof
A (C) is the embedding of the arrangement as a planar graph, such
that each arrangement vertex corresponds to a planar point,and
each edge corresponds to a planar subcurve of one of the curves
in C . Arrangements and planar maps are ubiquitous in computa-
tional geometry, and have numerous applications (e.g., [13, 22]), so
many potential users in the academia and in the industry may ben-
efit from a generic implementation of a complete software package
that constructs and maintains planar arrangements.

∗Work reported in this paper has been supported in part by IST
Programme of the EU as a Shared-corst RTD (FET Open) Project
under Contract No IST-006413 (ACS - Algorithms for Complex
Shapes) and by the Hermann Minkowski – Minerva Center for Ge-
ometry at Tel Aviv University.

CGAL [1], the Computational Geometry Algorithms Library, is the
product of a collaborative effort of several sites in Europeand Is-
rael, aiming to provide a generic and robust, yet efficient, imple-
mentation of widely used geometric data structures and algorithms.
The library consists of a geometrickernel [17, 24], which in turn
consists of constant-size non-modifiable geometric primitive ob-
jects (such as points, line segments, triangles, etc.) and predicates
and operations on these objects. On top of the kernel layer, the
library consists of a collection of modules, which provide imple-
mentations of many fundamental geometric data structures and al-
gorithms. The arrangement package is a part of this layer.

The software described in this paper rigorously adapts, as does
CGAL in general, thegeneric programmingparadigm [6], making
extensive use of C++ class-templates and function-templates. The
generic-programming paradigm uses a formal hierarchy of abstract
requirements on data types referred to asconcepts, and a set of
components that conform precisely to the specified requirements,
referred to asmodels.

In software engineering,design patternsare frequently used to sup-
ply standard solutions to common problems recurring in software
design. Design patterns supply a systematic high-level approach
that focuses on the relations between classes and objects, rather
than the specification of individual components. See the book by
Gammaet al. [20] for a catalog of the most common design pat-
terns.

While relations between objects in a design pattern are usually
realized in terms of abstract data types and polymorphism, de-
sign patterns can successfully be applied in generic program-
ming as well, as we show in this paper. A good example are
the point-location algorithms supplied by the arrangementpack-
age. One of the most important operations on arrangements is
answering thepoint-locationquery: Given a query pointq, find
the arrangement cell that containsq. We supply several point-
location algorithms, and enable package users to employ theal-
gorithm best suited for their application. To this end, we use
the strategy design-pattern, which defines a family of algorithms,
each implemented by a separate class, and we make them inter-
changeable. The four point-location classes are:Arr naive point
location, which locates the query point naı̈vely, by exhaus-
tively scanning all arrangement cells;Arr walk along a line
point location, which simulates a traversal along an imaginary
vertical ray emanating from infinity and directed toward thequery
point; Arr landmarks point location, which uses a set of “land-
mark” points, whose locations in the arrangement are known.Given
a query point, it uses a nearest-neighbor search structure (e.g., KD-
tree) to find the nearest landmark and then it traverses the straight

24

line segment connecting this landmark to the query point. Finally,
theArr trapezoidal ric point location implements Mulmuley’s
point-location algorithm [29], which is based on the vertical de-
composition of the arrangement into pseudo-trapezoids. The last
two strategies are more efficient. However, they require prepro-
cessing and consume more space, as they maintain auxiliary data-
structures. The first two strategies do not require any extradata and
operate directly on their associated arrangements.

In classic object-oriented programming, the point-location process
can be realized with an abstract base class that provides a pure
virtual function, locate(q), which accepts a pointq and results
with the arrangement cell containing it. All concrete point-location
classes inherit from the base class, and all arrangement algorithms
that issue point-location queries use a pointer to an abstract base
object, which actually refers to one of the concrete point-location
classes. When using generic programming, we rely less on inher-
itance or virtual functions. Instead, we define a concept named
ArrangementPointLocation 2, such that all models of this concept
must supply alocate() function. All the various point-location
classes model this concept. Note that the concept definitionhas no
trace in the actual C++ code, so from a syntactical point of view,
these classes are completely unrelated. Any generic algorithm that
issues point-location queries is implemented as a templateparame-
terized by a point-location class, which is a model of theArrange-
mentPointLocation 2 concept.

In the rest of the paper we show how additional design patterns are
exploited in the CGAL arrangement package in conjunction with
generic programming techniques. The application of combinations
of advanced programming techniques is argued to be synergistic.
Not only does it make the implementation more generic, it also
improves the quality of the software in all measured aspects.

1.1 Related Work

In the classic computational geometry literature two assumptions
are usually made to simplify the design and analysis of geometric
algorithms: First, inputs are in “general position”. That is, degen-
erate cases (e.g., three curves intersecting at a common point) in
the input are precluded. Secondly, operations on real numbers yield
accurate results (the “real RAM ” model, which also assumes that
each basic operation takes constant time). Unfortunately,these as-
sumptions do not hold in practice. Thus, an algorithm implemented
from a textbook may yield incorrect results, get into an infinite loop,
or just crash, while running on a degenerate, or nearly degenerate,
input (see [26, 32] for examples). This is one of the problemsad-
dressed successfully by CGAL in general and by the CGAL arrange-
ment package described here in particular.

The need for robust software implementation of computational ge-
ometry algorithms has driven many researchers to develop variants
of the classic algorithms that are less susceptible to degenerate in-
puts over the last decade. At the same time, advances in computer
algebra enabled the development of efficient software libraries that
offer exact arithmetic manipulations on unbounded integers, ratio-
nal numbers (e.g., GMP — Gnu’s multi-precision library [4]) and
even algebraic numbers (the CORE [2] library and the numerical fa-
cilities of LEDA [5]). These exactnumber typesserve as fundamen-
tal building-blocks in the robust implementation of many geometric
algorithms [37].

Keyseret al. [12, 27] implemented an arrangement-construction
module for algebraic curves as part of the MAPC and ESOLID li-
braries. However, their implementations make some generalpo-

sition assumptions. The LEDA library [5, 28] includes geometric
facilities that allow the construction and maintenance of arrange-
ments of line segments.

CGAL ’s arrangement package was the first complete software-
implementation, designed for constructing arrangements of arbi-
trary planar curves and supporting operations and queries on such
arrangements. More details on the design and implementation of
the previous versions of the package can be found in [18, 23].Many
users (e.g., [11, 14, 21, 25, 31]) have employed the arrangement
package to develop a variety of applications.

In this paper we show how concurrent applications of advanced
programming techniques improve the quality of the CGAL arrange-
ment software-package, achieving a software design according to
the generic-programming paradigm that is more modular and easy
to use, and an implementation, which is more extensible, adaptable,
and efficient.

1.2 Outline

The rest of this paper is organized as follows: Section 2 provides
the required background on CGAL ’s arrangement package, intro-
ducing key terms and presenting its architecture. The four succeed-
ing sections describe the applications of four different design pat-
terns within the generic programming paradigm, namelyadapter,
decorator, observer, andvisitor. These sections detail the pattern
intent, their impact, and implementation in the context of the ar-
rangement package. In Section 7 we highlight the performance of
our methods on various benchmarks. Finally, concluding remarks
and future-research suggestions are given in Section 8.

2 The Architecture

e

v1

v2

e′

f2

f̃
f1

f3

Figure 1. A portion of an arrangement of circles with some of
the DCEL records that represent it. f̃ is the unbounded face.
The halfedgee (and its twin e′) correspond to a circular arc
that connects the verticesv1 and v2 and separates the facef1
from f2. The predecessors and successors ofe and e′ are also
shown. Note thate together with its predecessor and successor
halfedges form a closed chain representing the inner boundary
of f1 (lightly shaded). Also note that the facef3 (darkly shaded)
has a more complicated structure, as it contains a hole.

The Arrangement 2<Traits,Dcel>1 class-template represents the
planar embedding of a set of (weakly)x-monotone2 planar curves

1CGAL prescribes the suffix2 for all data structures of planar
objects as a convention.

2A continuous planar curveC is weakly x-monotone, if every
vertical line intersects it at most once, or it is a vertical segment.

25

that are pairwise disjoint in their interiors. It provides the neces-
sary capabilities for maintaining the planar graph, while associat-
ing geometric data with the vertices, edges and faces of the graph.
The arrangement is represented using adoubly-connected edge list
(DCEL) — a data structure that enables efficient maintenance of
two-dimensional subdivisions.

The DCEL data-structure represents each curve using a pair of di-
rectedhalfedges, one directed from the left endpoint of the curve
to its right endpoint, and the other (itstwin halfedge) going in the
opposite direction. The DCEL consists of containers ofvertices(as-
sociated with planar points),halfedgesandfaces, where halfedges
are used to separate faces and to connect vertices. We store apointer
from each halfedge to the face lying to its left. Moreover, halfedges
are connected in circular lists and form chains, such that all edges
of a chain are incident to the same face and wind in a counter-
clockwise direction along its inner boundary (see Figure 1 for an
illustration). A non simply-connected face stores a container of
holes, where each hole is represented by an arbitrary halfedge on
the clockwise-oriented chain that forms its outer boundary. The full
details concerning the DCEL are omitted here; see [13, Section 2.2]
for further details and examples.

The Arrangement 2 class-template should be instantiated with two
objects as follows. (i) A traits class, which provides the geometric
functionality, and is tailored to handle a specific family ofcurves. It
encapsulates implementation details, such as the number type used,
the coordinate representation, and the geometric or algebraic com-
putation methods. (ii) A DCEL class, which represents the under-
lying topological data structure, and defaults toArr default dcel.
Users may extend this default DCEL implementation, as explained
in Section 3.1, or even supply their own DCEL class, written from
scratch.

The two template parameters enable the separation between the
topological and geometric aspects of the planar subdivision. This
separation is advantageous as it allows users to employ the package
with their own representation of any special family of curves, with-
out having any expertise in computational geometry. They should
only be capable of supplying the traits methods, which mainly in-
volves algebraic computations. Indeed, several of the package users
are not familiar with computational-geometry techniques and algo-
rithms. The separation is enabled by the modular design and conve-
niently implemented within the generic-programming paradigm. It
is a key aspect of the package, has been forced since its earlystages,
and heightened by the new design.

The interface ofArrangement 2 consists of various methods that
enable the traversal of the arrangement. For example, the class
supplies iterators for its vertices, halfedges and faces. The value
types of these iterators areVertex handle, Halfedge handle and
Face handle, respectively. The handle classes themselves supply
methods for local traversals. For example, it is possible tovisit all
halfedges incident to a specific vertex using itsVertex handle, or
to iterate over all halfedges along the boundary of a face using its
Face handle.

Alongside with the traversal methods, the arrangement class
also supports several methods that modify the arrangement,
the most important ones being the specialized insertion func-
tions. The functionsinsert at face interior(C,f), insert
from left vertex(C,u). (the symmetric functioninsert from
right vertex(C,u),) andinsert at vertices(C,u1,u2) can be used
to create an edge that correspond to anx-monotone curveC whose
interior is disjoint from existing edges and vertices, depending on

whether the curve endpoints are associated with existing arrange-
ment vertices; see Figure 2 for an illustration of the various cases.
Note that these insertion functions hardly involve any geometric
operations, if at all. They accept topologically related parameters,
and use them to operate directly on the DCEL records, thus saving
algebraic operations, which are especially expensive whenhigher-
degree curves are involved. Other modification methods enable
users to split an edge into two, to merge two adjacent edges, and
to remove an edge from the arrangement.

An important guideline in the design is to decouple the arrangement
representation from the various algorithms that operate onit. Thus,
non-trivial algorithms that involve geometric operationsare imple-
mented as free (global) functions. For example, we offer a free
insert() function for theincrementalinsertion of general curves3

computing theirzone(see Section 6.2), and another freeinsert()
function for theaggregatedinsertion of sets of general curves, using
a sweep-line algorithm. Another important operation implemented
as a free function is the computation of theoverlayof two arrange-
ments (see [13, Chapter 2] and Section 6.1 below).

2.1 The Traits Class

As mentioned in the previous subsection, theArrangement 2 class-
template is parameterized with atraits class that defines the ab-
stract interface between the arrangement data structure and the ge-
ometric primitives they use. The name “traits class” was given by
Myers [30] for a concept of a class that should support certain pre-
defined methods, passed as a parameter to another class template.
In our case, the geometric traits-class defines the family ofcurves
handled. Moreover, details such as the number type used to rep-
resent coordinate values, the type of coordinate system used (i.e.,
Cartesian or homogeneous), the algebraic methods used, andex-
traneous data stored with the geometric objects, if present, are all
determined by the traits class and encapsulated within it.

The traits-class concept is factored into a hierarchy of refined con-
cepts listed in the next paragraph. The refinement hierarchyis gen-
erated according to the identified minimal requirements from the
traits imposed by different algorithms that operate on arrangements,
thus alleviating the production of traits classes, and increasing the
usability of the algorithms.

Every model of the traits-class concept must define two typesof
objects, namelyX monotone curve 2 andPoint 2. The former rep-
resents anx-monotone curve, and the latter is the type of the end-
points of the curves, representing a point in the plane. The basicAr-
rangementBasicTraits 2 concept lists the minimal set of predicates
on objects of these two types sufficient to enable the operations pro-
vided by theArrangement 2 class-template itself, and the insertion
of x-monotone curves that are also non-intersecting in their interi-
ors. Among these predicate are thepoint-statuspredicate: given an
x-monotone curveC and a pointp, determine whetherp is above,
below, or lies onC; and thecompare-to-rightpredicate: given two
x-monotone curvesC1, C2 that share a common left endpointp, de-
termine the relative position of the two curves immediatelyto the
right of p. The set of predicates defined by theArrangementBa-
sicTraits 2 concept is also sufficient for answering point-location
queries by various strategies, as detailed in the previous section.4

3A general curve may not necessarily bex-monotone, can in-
tersect the existing arrangement curves, and its insertionlocation is
unknowna priori.

4The only exception is the “landmarks” strategy, which requires

26

f

v1

v2
u

v
f ′

f

h1

h2
u1

u2

(a) (b) (c)
Figure 2. The various insertion procedures. The insertedx-monotone curve is drawn with a light dashed line, surrounded by two
solid arrows that represent the pair of twin halfedges addedto the DCEL. Existing vertices are shown as black dots while new vertices
are shown as light dots. Existing halfedges that are affected by the insertion operations are drawn as dashed arrows. (a)Inserting a
subcurve inside the facef . (b) Inserting a subcurve whose one endpoint corresponds tothe existing vertexu. (c) Inserting a subcurve
whose both endpoints correspond to the existing verticesu1 and u2.

The construction of an arrangement of general curves requires the
refinedArrangementTraits 2 concept. In addition to the point andx-
monotone curve types, a model of the refined concept must define
a third type that represents a general (not necessarilyx-monotone)
curve in the plane, namedCurve 2. An intersection point of the
curves is of typePoint 2. In addition, it has to support geomet-
ric constructions, such as subdividing a given curve into simple
x-monotone subcurves, computing the intersections betweentwo
given x-monotone curves, splitting anx-monotone curve into two
subcurves at a given point in its interior, and merging two con-
tiguous x-monotone portions of the same curve into a singlex-
monotone curve.

All traits-class operations are implemented as function objects
(functors) according to CGAL ’s guidelines. This allows for the ex-
tension of the primitive types above without the need to redefine
the methods that operate on them (see [24] for details on the ex-
tensible kernel). For a detailed specification of the various concept
requirements see [36].

We include several traits classes with the public distribution of
CGAL (see Figure 3) as follows. Traits classes for line segments5,
a traits class that operates on continuous piecewise linearcurves,
namely polylines [23], and a traits class that handles segments of
planar algebraic curves of degree 2, namely conic arcs (e.g., el-
lipses, hyperbolas, or parabolas) [35].

EXACUS [3] is an ongoing project that aims to provide a set of li-
braries for efficient and exact algorithms for curves and surfaces.
In particular, it includes CGAL-compatible traits-classes for com-
puting arrangements of planar algebraic curves of degree 2 (con-
ics) [10], 3 (cubics) [15] and 4 (quartics) [9]. Another traits class
for conics was developed as part of an initial attempt to provide a
CGAL kernel that supports curved objects [16].

a traits class that models the refinedArrangementLandmarkTraits 2
concept. For lack of space, we omit the details here.

5The “non-caching” classes shown in Figure 3, which model
the ArrangementBasicTraits 2 and ArrangementTraits 2 concepts
respectively, directly operate on the kernel segments. Their im-
plementation is simple, yet may lead to a cascaded representation
of intersection points with exponentially long bit-length, which in
turn may drastically increase the time consumption of arithmetic
operations. The classArr segment traits 2 avoids this cascading
problem by storing extra data with each segment. It achievesfaster
running times when arrangements with relatively many intersection
points are constructed. However, it uses more space.

Arrangement_2<Traits,Dcel>

Arr_default_dcel

Arr_non_caching_segment_traits_2

Arr_segment_traits_2

Arr_polyline_traits_2

Arr_conic_traits_2

Arr_non_caching_segment_basic_traits_2

ArrangementDcel

ArrangementBasicTraits 2

ArrangementTraits 2

Figure 3. The main Arrangement 2 class and its template
parameters. Arrows designate pointers, solid lines directed
through a triangle mark an inheritance or a refinement rela-
tion, and directed dotted lines directed through a triangledes-
ignate “is a model of” relation.

3 Adapters

The adapter design-pattern “converts the interface of a class into
another interface clients expect. Adapters let classes work to-
gether that could not otherwise, because of incompatible interfaces”
(Gammaet al. [20]).

Adapters manifest themselves in a few places in the arrangement
module, the first being a mediator between the arrangement class
operations and the traits-class primitive operations. This traits
adapter add geometric predicates to the traits class, basedon the
primitive operations provided by a model of theArrangementBa-
sicTraits 2 concept. For lack of space we omit the technical details,
which can be found in [19].

3.1 The DCEL Face Extender

Another application of an adapter is exhibited in the mechanism
to conveniently extend the topological face-feature of theDCEL.
While it is possible to store extra (non-geometric) data with the
curves or points by extending their types respectively (seemore de-
tails in Section 4.1), it is also possible to extend the vertex, halfedge,

27

or face types of the DCEL through inheritance. Many times it is de-
sired to associate extra data just with the arrangement faces. For ex-
ample, when an arrangement represents the subdivision of a country
into regions associated with their population density. In this case,
there is no alternative other than to extend the DCEL face. As this
technique is might be difficult for inexperienced users, we provide
the class-templateFace extended dcel<FaceData>, which extends
each face in theArr default dcel class with aFaceData object.

3.2 Boost Graph Adapters

The BOOST graph library (BGL; see [33]) is a generic library of
graph algorithms and data structures designed in the same spirit as
STL. It supports graph algorithms, and as our arrangements are em-
bedded as planar graphs, it is only natural to extend the DCEL with
the interface that the BGL expects, and gain the ability to perform
the operations that the BGL supports, such as shortest-path compu-
tation. We adapt anArrangement 2 instance to a BOOST graph by
providing a set of free functions that operate on the arrangement
features and conform with the relevant BGL concepts.

We mention that besides the straightforward adaptation, which as-
sociates a vertex with each DCEL vertex and an edge with each
DCEL edge, we also offer adual adapter, which associates a graph
vertex with each DCEL face, such that two vertices are connected,
iff there is a DCEL halfedge that separates the two corresponding
faces. These representations are useful for many applications, such
as answering motion-planning queries (see e.g., [25]).

4 Decorators

The decorator design-pattern “attaches additional responsibilities
to an object dynamically. Decorators provide a flexible alternative
to sub-classing for extending functionality”(Gammaet al. [20]).

In traditional object-oriented programming, attaching additional
functionality to an entire hierarchy of classes, all inheriting from
a common (perhaps virtual) base class, referred to as the compo-
nent class, requires the introduction of a decorator class that in-
herits from the base class and stores a pointer to a virtual compo-
nent object. When applying one of the methods to the decorator, it
first calls the component method, and then performs the supplemen-
tary operations. In the arrangement package we apply the decorator
design-pattern when we attach auxiliary data to the geometric enti-
ties defined by a specific traits class.6

4.1 Meta-Traits Classes

We offer several traits-class decorators, which we refer toasmeta-
traits classes. Recall that the traits classes do not have a common
base class, but they all model theArrangementTraits 2 concept. The
meta-traits decorators are parameterized by such a traits class. They
inherit some of the base-traits class functors, while overriding oth-
ers exploiting the auxiliary data maintained with the geometric ob-
jects.

The Arr consolidated curve data traits 2<BaseTraits,Data>
class inherits itsCurve 2 and X monotone curve 2 types from the
respective types of the base-traits class, while extendingthe curve
with an additionaldata field, and thex-monotone curve with a
container of data fields. It relies on the geometric operations

6This is a straightforward alternative to extending the DCEL ver-
tices and halfedges (see Section 3.1).

supplied by the base-traits, and only needs to maintain the extra
data fields. When subdividing a curve intox-monotone subcurves,
its data field is copied to the resulting subcurves. Similarly, when
splitting anx-monotone curve, its data container is duplicated and
stored with the two resulting subcurves. When twox-monotone
curves overlap, the union of their data containers is computed and
stored at the resulting overlapping subcurve.

The Arr merged curve data traits 2<BaseTraits,Data,Merge>
class operates similarly, except that it extends theX monotone
curve 2 type with just a single data field. When an overlap occurs,
it uses theMerge functor, given as a template parameter, to merge
the data fields of the two overlappingx-monotone curves, and
stores the result with the resulting overlapping subcurve.

4.2 Arrangements with History

Arrangement_with_history_2
 <BaseTraits,Dcel>

Arrangement_2
 <BaseTraits,Dcel>

BaseTraits

Curve_2

Arr_consolidated_curve_data_traits_2

<BaseTraits, BaseTraits::Curve_2*>

Curve_edges_observer

ArrangementTraits 2

Figure 4. TheArrangement with history 2 decorator. An ar-
row with a rhombus-shaped tail mean that a class stores a con-
tainer of objects of the pointed type.

Another major component of the CGAL arrangement package is
theArrangement with history 2<BaseTraits,Dcel> class-template,
which maintains a planar arrangement of general curves, while
maintaining its construction history. The input curves that induce
the arrangement are split intox-monotone subcurves that are pair-
wise disjoint in their interior. These subcurves are associated with
the arrangement halfedges. In particular, each edge storesa pointer
to the input curve associated with it, (or a container of pointers
in case the edge is associated with an overlapping section ofsev-
eral curves), while each subcurve stores the set of edges it induces.
Users can traverse through the origin curves of each arrangement
edge, or iterate on all edges induced by a given input curve.

The Arrangement with history 2 class is not more than a simple
decorator for theArrangement 2, as shown in Figure 4. It inher-
its from an arrangement class that is parameterized by the consoli-
dated curve-data traits (see Section 4.1), where the extra data type
is a pointer to aBaseTraits::Curve 2 object. Thus, the pointers
from each edge to its origin curve(s) are automatically maintained.
The cross-pointers between input curves and arrangement edges are
maintained using anobserver(see the next section) that keeps track
of each change that involves an arrangement edge.

Tracing back the curve (or curves) that induced an arrangement
edge is essential in a variety of applications that use arrangements,
such as robot motion planning (see e.g., [25]).

5 Observers

The observer design-pattern “defines a one-to-many dependency
between objects, so that when one object changes state, all
its dependents are notified and updated automatically” (Gamma
et al. [20]).

28

Observers play a significant role in the new design of the arrange-
ment package. They serve many different needs with a single uni-
fied approach, as multiple observers can be attached to the same
arrangement instance. An important set of observer classesis the
one employed by some of thepoint-locationstrategies that maintain
auxiliary data-structures (see Section 1). Another important reason
for supporting observers of arrangements is to allow users to intro-
duce their own observer classes. This is not just a convenience, but
crucial to the usability of the package, as it might be the only way
for providing certain output — data that should be bound withthe
topological features of the arrangement and is available only during
construction. This is explained in Subsection 5.3. In the following
subsections we give a detailed description of the notification mech-
anism implemented via the observer design-pattern.

5.1 The Notification Mechanism

The Arr observer<Arrangement> class-template is parameterized
with an arrangement class. It stores a pointer to an arrangement
object, and is capable of receiving notifications just before a struc-
tural change occurs in the arrangement and immediately after such a
change takes place. Hence, each notification is comprised ofa pair
of “before” and “after” functions. TheArr observer<Arrangement>
class-template serves as a base class for other observer classes and
defines a set of virtual notification functions, giving them all a de-
fault empty implementation. Naturally, one of the objectives is to
minimize the observer interface, that is, identifying the minimal set
of event points, while capturing all possible changes that arrange-
ments can undergo.

The set of notification functions can be divided into three categories
as follows (see [36] for a detailed specification): (i) Notifiers of
changes that affect the entire topological structure. Suchchanges
occur when the arrangement is cleared or when it is assigned with
the contents of another arrangement. (ii) Notifiers of a local change
to the topological structure. Among these changes are the creation
of a new vertex, the splitting of an edge, and the formation ofa new
hole inside a face. (iii) Notifiers of a global change initiated by a
free function, and called by the free function (e.g., incremental and
aggregate insert; see Section 2). It is required that no point-location
queries (or any other queries for that matter) are issued between the
calls to the “before” and “after” functions of this pair.7

Each arrangement object stores a list of pointers toArr observer
objects, and whenever one of the structural changes listed in the first
two categories above is about to take place, the arrangementobject
performs aforward traversal of this list and invokes the appropriate
function of each observer. After the change has taken place the ob-
server list is traversed in abackwardmanner (from tail to head) and
the appropriate notification function is invoked for each observer.
This allows for the nesting of observer objects. The observer list
is not made public, and can only be accessed by theArr observer
class. A free function may choose to trigger a similar notification,
which falls under the third category above.

A pointer to a valid arrangement object must be supplied to the
constructor of anArr observer object. The newly created observer
object adds itself to the observer list of the arrangement. From that
moment on, it starts receiving notifications whenever the associated
arrangement object changes. In case the new observer is attached to
a non-empty arrangement, its constructor may extract the relevant

7This constraint can improve the efficiency of the maintenance
of auxiliary data-structures for the relevant point-location strate-
gies, as explained in the next subsection.

data from the non-empty arrangement using various traversal meth-
ods offered by the public interface of theArrangement 2 class, and
update any internal data stored in the observer.

Arrangement_2<Traits,Dcel> Arr_observer<Arrangement>

Arr_naive_point_location

Arr_walk_along_line_point_location

Arr_trapezoidal_ric_point_location

Arr_landmarks_point_location

Arr_trapezoidal_ric_observer

Arr_landmarks_observer

ArrangementPointLocation 2

Figure 5. The point-location classes and the notification mech-
anism.

5.2 Point-Location Observers

As mentioned in Section 1, thelandmarksand the trapezoidal
point-location classes maintain auxiliary data structures. These
strategies are characterized by very efficient query time but less ef-
ficient preprocessing time and space. Naturally, these strategies ex-
hibit better overall performance when the number of updatesto the
arrangement is relatively small compared to the number of issued
queries. Nevertheless, when the arrangement is modified theclasses
that implement these point-location strategies must keep their aux-
iliary data structure synchronized with their attached arrangement-
instance.

To this end, the landmarks point-location class and the trapezoidal
point-location class define the nested observer classes that inherit
from Arr observer, and are used to receive notifications whenever
the arrangement is modified (see Figure 3). For example, a variant
of the landmarks strategy uses the arrangement vertices as land-
marks, so whenever a new vertex is created (by the insertion of a
new edge or by the splitting of an existing edge), it should bein-
serted to the nearest-neighbor search structure maintained by the
landmarks class. The usage of the notification mechanism makes
it possible to associate several point-location objects with the same
arrangement simultaneously.

5.3 User-defined Observers

In addition to the point-location observer classes, users can inherit
their own observer classes fromArr observer and use the notifi-
cation mechanism for a variety of purposes, such as dynamically
maintaining the extra data they store with the arrangement features.
Assume, for example, users associate some additional data records
with the arrangement faces (see Section 3.1). In this case their ap-
plication needs to be notified whenever a new face is created (split
from another face) or deleted (merged with another face), and re-
ceive a handle to the edge whose insertion (or deletion, respec-
tively) causes this change. An appropriately written observer is
ideal for this purpose.

6 Visitors

Thevisitor design-pattern “represents an operation to be performed
on an object or on the elements of an object structure. Visitors allow
the definition of new operations without changing the classes of the
elements on which they operate” (Gammaet al. [20]).

29

Arrangements have numerous applications, and different applica-
tions may require distinct and unrelated operations to be performed
on arrangements. Each of these operations may treat different ele-
ments of the arrangement data-structure differently usinga subset
of related operations. Implementing all these operations within the
arrangement class and distributing all the operation subsets across
the various elements of the arrangement data structure leads to a
“polluted” system that is hard to understand, use, and maintain. The
BGL, for example, uses visitors [33, Section 12.3] to overcome this
problem when extending its graph algorithms.

In the arrangement package we use visitors to implement geometric
algorithms that are based on a common algorithmic infrastructure.
We have identified two main sets of algorithms: Algorithms based
on the sweep-line framework and algorithms based on the zone-
computation framework. Thus, we provide two class-templates,
namely Sweep line 2 and Arrangement zone 2, which implement
these two fundamental algorithmic procedures common to thetwo
families of algorithms. Specific algorithms are implemented as vis-
itor classes that receive notifications of the events handled by the
basic procedure and can construct their output structures accord-
ingly. The main benefit we gain from this design is a centralized,
reusable and easy to maintain code. Moreover, users may add their
own sweep-based (or zone-based) algorithms, as the implementa-
tion of such an algorithm reduces to implementing an appropriate
visitor class.

6.1 The Generic Sweep-Line Algorithm

Sweeping the plane with a line is one of the most fundamental
paradigms in Computational Geometry. The famoussweep-line
algorithm of Bentley and Ottmann [8] was originally formulated
for sets of non-vertical line segments, with the “general position”
assumptions that no three segments intersect at a common point
and no two segments overlap. An imaginary vertical line is swept
over the input set from left to right, transforming the static two-
dimensional problem into a dynamic one-dimensional one. Ateach
time during the sweep a subset of the input segments intersect this
vertical line in a certain order. The order of the segments may
change as the line moves along thex-axis, implying a change in the
topology of the arrangement, only at a finite number ofevent points,
namely intersection points of two segments and left endpoints or
right endpoints of segments. The event points, namely segment
endpoints and all intersection points that have already been discov-
ered, are stored in a dynamic event queue, named theX-structure,
in an xy-lexicographic order, while the ordered sequence of seg-
ments intersecting the imaginary vertical line is stored ina dynamic
structure called theY -structure. Both structures are maintained as
balanced binary trees.

The Sweep line 2<Traits,Event,Subcurve,Visitor> class-
template implements a generic sweep-line algorithm that can
handle any set of arbitraryx-monotone curves [34], contain-
ing all possible kinds of degeneracies [13, Section 2.1], [28,
Section 10.7], using a small set of geometric predicates and
constructions involving the curves. TheTraits parameter should
be instantiated with a model of theArrangementTraits 2 concept
(see Section 2.1). TheVisitor parameter should be a model of the
SweepLineVisitor 2 concept, whose functionality is explained in
details next.

TheSweep line 2 class uses two auxiliary data types:Event base,
which stores aPoint 2 object representing the coordinates of an
event point, andSubcurve base, associated with a portion of an

x-monotone curve (represented as anX monotone curve 2 object)
whose interior is disjoint from all other subcurves at the current lo-
cation of the sweep line (it may intersect undiscovered subcurves
as the sweep line advances). These two auxiliary types also store
additional data members, needed internally by the sweep-line algo-
rithm, and are not exposed to external users. However, the visitor
class may extend these types by inheriting anEvent class and a
Subcurve class from the respective base classes and using the ex-
tended types to initialize the sweep-line template.

During the sweep-line process the event objects in theX-structure
are sorted lexicographically and the subcurve objects are stored in
theY-structure. TheSweep line 2 class performs only the very ba-
sic operations of maintaining theX-structure and theY-structure,
while the visitor class is responsible for producing the actual output
of the algorithm. Whenever the sweep-line class handles an event,
it sends a notification to its visitor, with the relevantEvent object
and theSubcurve objects incident to it.8 This way the sweep-line
visitor is capable of attaching auxiliary data members and adding
functionality to the event and subcurve objects. It can alsocon-
struct the output accordingly.

It should be mentioned that Bartuschkaet al. [7] made an initial
attempt to provide a generic sweep-line algorithm in the LEDA li-
brary. They offer a class that couples a sweep-traits class with a
visitor. However, in their implementation the traits classis respon-
sible for performing the entire sweep-line algorithm, whereas our
class performs the sweep-line process by itself, and only requires a
traits class that supplies a small set of geometric primitives.

A simple sweep-line visitor class is used for reporting all intersec-
tion points induced by a set of input curves.9 This visitor does not
require storing any auxiliary data structures with events or with sub-
curves. The defaultEvent base andSubcurve base types are used to
instantiate the sweep-line template. The visitor simply reports an
event pointp, if it has more than a single incident subcurve.

As mentioned above, a key operation implemented with the aidof
a sweep-line visitor is the construction of a DCEL that corresponds
to the arrangement of a set of input curves. The visitor classin this
case is more complicated, as it needs to store extra data withthe
subcurves and the events as follows. The event class is extended by
a handle of a DCEL vertex that corresponds to the event point. As
long as the vertex has not been created yet, the handle is invalid.
The subcurve class is extended by a pointer to an event-object point
that corresponds to the left endpoint of the subcurve. When pro-
cessing an event pointp, it is possible to go over all subcurves such
that p is their right endpoint (so they lie to the left ofp) and use
this auxiliary data to insert the subcurves into the arrangement us-
ing one of the specialized insertion methods (see Section 2). In fact,
additional information, stored with each subcurve, helps perform-
ing the insertion in the most efficient manner, utilizing allavailable
geometric and topological information. For lack of space, we omit
the related technical details here.

Another operation closely related to the construction of a DCEL
structure from scratch is the aggregated insertion of new curves into
anexistingarrangement and efficiently updating an existing DCEL
structure. In this case we have to sweep over a consolidated set of

8The visitor accepts two iterators defining the range of incident
subcurves in theY-structure, so it may also access the neighboring
subcurves from above and below.

9This operation is indirectly related to arrangements, as itis im-
plemented using the sweep-line framework.

30

curves comprised of all subcurves associated with existingDCEL
edges, and the set of new curvesC . Our goal is to discover the inter-
sections involving the new curves and to update the existingDCEL
accordingly. We first define a meta-traits class that extendsthe x-
monotone curve type (see [19] for details) with a pointer to acor-
responding DCEL halfedge (this pointer will be null for the newly
inserted curves).10 This way we can easily identify events that in-
volve only existing subcurves, which can be ignored, and handle
only those events involving the newly inserted curves. Whenhan-
dling such events, we should insert new edge pairs into the DCEL,
representing the subcurves ofC . In addition, if we locate an inter-
section between a new curve and an existing subcurve in the DCEL,
we should split the corresponding edges at the intersectionpoint to
form two halfedge pairs. This operation is elementary and takes
constant time.

A fundamental operation that is straightforwardly implemented us-
ing a sweep-line visitor is the overlay of two arrangements,given as
a “blue” DCEL and a “red” DCEL. The major added difficulty over
the previously mentioned visitors is the need to update facestruc-
ture and face information. Let us assume that each of the input-
arrangement faces is associated with some data object (see Sec-
tion 3.1). If we put our arrangements one on top of the other, we get
an arrangement, whose faces correspond to overlapping regions of
the blue and red faces. We would like to construct an output DCEL
whose faces are associated with the corresponding pairs of blue and
red data objects. We do so by sweeping through a consolidatedset
of “blue” and “red” subcurves. As explained above, it is convenient
to use a meta-traits class that extends thex-monotone curves with
a color identifier (BLUE or RED in our case) and a halfedge pointer.
This way we can ignore “monochromatic” intersections and com-
pute only the red–blue intersection points (or overlaps). The overlay
visitor is parameterized by an overlay-traits class, whichdefines the
merge operations between “red” and “blue” DCEL features.

(aggregated insertion)

insert (arr, begin, end);

overlay (arr1, arr2,
res_arr);Arr_overlay_visitor

Subcurve,Visitor>
Sweep_line_2<Traits,Event,

Arr_insertion_visitor

<Arrangement,Visitor>
Arrangement_zone_2

Arrangement_2<Traits,Dcel>

Arr_inc_insert_zone_visitor (incremental insertion)

insert (arr, cv);

SweepLineVisitor 2

ArrangementZoneVisitor 2

Figure 6. The free functions that are implemented with the aid
of visitor classes.

6.2 Zone-Computation Visitors

Many applications can make use of the following operation: Given
an arrangementA and anx-monotone curveC, compute thezone
of C in A . That is, identify all arrangement cells that the curve

10It is also possible for the visitor to extend theSubcurve type, but
if we attach the auxiliary data at the traits-class level we can bene-
fit from giving more efficient implementations of some traits-class
functions. For example, we do not have to compute intersections
between two existing DCEL subcurves.

crosses. The zone can be computed by locating the left endpoint of
C in the arrangement and then “walking” along the curve to the right
endpoint, keeping track of the vertices, edges and faces crossed on
the way (see for example [13, Section 8.3] for the computation of
the zone of a line in an arrangement of lines).

The primary usage for the zone-computation algorithm is thein-
cremental insertion of anx-monotone curve into the arrangement.
However, it is sometimes necessary to compute the zone of a curve
in an arrangement without actually inserting it. In other cases, the
entire zone is not required: Suppose we wish to check whethera
given curve passes through an existing arrangement vertex.If such
a vertex exists, the process can be terminated as soon as the vertex
is located.

While the sweep-line algorithm operates on a set of inputx-
monotone curves, and its visitors can use the notifications they re-
ceive to construct their output structures, the zone-computation al-
gorithm operates on an arrangement object, and its visitorsmay
modify the same arrangement instance as the computation pro-
gresses. This makes the interaction of the main class with its visi-
tors slightly more intricate.

TheArrangement zone 2<Arrangement,Visitor> class-template im-
plements a generic zone-computation algorithm. It is parameter-
ized by an arrangement class and by a visitor class. Given a curve
C, the zone visitor is notified whenever a maximal subcurveĈ of
C is found. The interior of every reported subcurve does not co-
incide with any arrangement vertex or edge and lies within a face
f . The arrangement features that define the subcurve endpoints are
also reported. A similar notification is issued whenever a subcurve
Ĉ that overlaps an arrangement edge is detected. In both cases, the
visitor returns a pair comprised of a halfedge handle and a Boolean
flag as a result. In case the visitor inserts the subcurveĈ into the
arrangement, it returns a handle to the newly created edge. Oth-
erwise, it returns an invalid handle. The Boolean value indicates
whether the zone-computation process should terminate — this is
convenient for gaining efficiency in some applications.

The visitor classArr inc insert zone visitor 2 performs the in-
cremental insertion of anx-monotone curve. It implements the two
functions described above to insert the generated subcurves by split-
ting the halfedges intersected by the curve and using the specialized
insertion functions. Other zone visitors are even easier toimple-
ment.

7 Experiments

A user of the package has to select the appropriate componentin
many categories (e.g., number type, geometric kernel, traits class,
end point-location strategy). For each selection the user is offered
many options. The use of generic programming enables this flex-
ibility. However, it induces a vast number of configurationsthat
must be tested, verified, and tuned. We have developed a bench-
marking toolkit that automatically generates all the required config-
urations and measures the performance of each configurationon a
set of inputs. Naturally, we had to restrict ourselves and publish just
the most efficient configurations for each traits class. Table 7 indi-
cates the time (in seconds) it took to construct arrangements of var-
ious curve typesusing exact computations. For each traits class we
have an input file containing many degeneracies (denotedDegn.)
and a randomly generated input file (denotedRand.). The results,
produced by experiments conducted on a Pentium 1.8 GHz, clearly
show the major improvement in performance that the package has

31

undergone from the last public release of CGAL (version 3.1) to the
current internal release (version 3.2).

Table 1. Time consumption in seconds of the construction of
arrangements of various curve types. The number of input
curves and the dimensions of the resulting arrangements are
also shown.

Name C V E F 3.1 3.2
Segments

Degn. 104 1504 2704 1202 0.170 0.083
Rand. 100 1129 1958 831 0.160 0.041

Polylines
Degn. 10 112 204 94 0.081 0.020
Rand. 10 1508 2923 1417 0.769 0.223

Conics
Degn. 41 507 1042 537 2.970 0.647
Rand. 30 677 1303 628 118.0 18.2

The reimplemented package is at least twice as efficient as the old
version (CGAL 3.1) in all cases, and as much as six times more ef-
ficient in some cases. The main contribution to the improvement is
due to the reduction in the number of calls to geometric operations
(provided by the traits class). The effect of this reductionincreases
with the increase in time consumption of the geometric operation.
Thus, construction of arrangements of conic arcs exhibits the largest
improvement. Figure 7 shows the arrangement of the CGAL logo.
It consists of 34 circles and 425 line segments. It took 1.14 seconds
to construct the arrangement on the 1.8 GHz Pentium PC using the
aggregate insertion method.

Figure 7. The arrangement of theCGAL logo.

8 Conclusions

We show how our arrangement package can be used with vari-
ous components and different underlying algorithms that can be
plugged in using the appropriate traits classes. Users may select
the configuration that is most suitable for their application from the
variety offered in CGAL or in its accompanying software libraries,
or implement their own traits class. Switching between different
traits classes typically involves just a minor change of a few lines
of code.

We have shown how careful software design based on the generic-
programming paradigm makes it easier to adapt existing traits
classes or even to develop new ones. We believe that similar tech-
niques can be employed in other software packages from otherdis-
ciplines as well.

9 References

[1] The CGAL project homepage.http://www.cgal.org/.

[2] The CORE library homepage.http://www.cs.nyu.edu/exact/core/.

[3] The EXACUS homepage.http://www.mpi-sb.mpg.de/projects/EXACUS/.

[4] The GNU MP bignum library.http://www.swox.com/gmp/.

[5] The LEDA homepage.http://www.algorithmic-solutions.com/enleda.htm.

[6] M. H. Austern.Generic Programming and the STL. Addison Wesley, 1999.

[7] U. Bartuschka, S. Näher, and M. Seel. A generic plane sweep framework, 2000.
http://www.mpi-inf.mpg.de/ ∼seel/Generic sweep/index.html.

[8] J. L. Bentley and T. A. Ottmann. Algorithms for reportingand counting geomet-
ric intersections.IEEE Trans. Comput., C-28(9):643–647, 1979.

[9] E. Berberich, A. Eigenwillig, M. Hemmer, S. Hert, L. Kettner, K. Mehlhorn,
J. Reichel, S. Schmitt, E. Schömer, and N. Wolpert. EXACUS: Efficient and
exact algorithms for curves and surfaces. to appear in proc.13th Europ. Sympos.
Alg. (ESA), 2005.

[10] E. Berberich, A. Eigenwillig, M. Hemmer, S. Hert, K. Mehlhorn, and
E. Schömer. A computational basis for conic arcs and boolean operations on
conic polygons. InProc. 10th Europ. Sympos. Alg. (ESA), pages 174–186, 2002.

[11] D. Cohen-Or, S. Lev-Yehudi, A. Karol, and A. Tal. Inner-cover of non-convex
shapes.International Journal on Shape Modeling, 9(2):223–238, Dec 2003.

[12] T. Culver, J. Keyser, M. Foskey, S. Krishnan, and D. Manocha. ESOLID — a
system for exact boundary evaluation.Computer-Aided Design, 36, 2003.

[13] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry: Algorithms and Applications. Springer-Verlag, Berlin, Germany, 2nd
edition, 2000.

[14] D. A. Duc, N. D. Ha, and L. T. Hang. Proposing a model to store and a method to
edit spatial data in topological maps. Technical report, HoChi Minh University
of Natural Sciences, Ho Chi Minh City, Vietnam, 2001.

[15] A. Eigenwillig, E. S. L. Kettner, and N. Wolpert. Complete, exact and efficient
computations with cubic curves. InProc. 20th Annu. ACM Sympos. Comput.
Geom. (SCG), pages 409–418, 2004.

[16] I. Z. Emiris, A. Kakargias, S. Pion, M. Teillaud, and E. P. Tsigaridas. Towards an
open curved kernel. InProc. 20th Annu. ACM Sympos. Comput. Geom. (SCG),
pages 438–446, 2004.

[17] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S.Schönherr. On the design
of CGAL, the Computational Geometry Algorithms Library.Software — Practice
and Experience, 30:1167–1202, 2000.

[18] E. Flato, D. Halperin, I. Hanniel, O. Nechushtan, and E.Ezra. The design and
implementation of planar maps in CGAL. The ACM Journal of Experimental
Algorithmics, 5, 2000.

[19] E. Fogel, R. Wein, and D. Halperin. Code flexibility and program efficiency by
genericity: Improving CGAL’s arrangements. InProc. 12th Europ. Sympos. Alg.
(ESA), pages 664–676, 2004.

[20] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns — Elements
of Reusable Object-Oriented Software. Addison Wesley, 1995.

[21] B. Gerkey. Visibility-based pursuit-evasion for searchers with limited field of

32

view. Presented in the 2nd CGAL User Workshop (2004).

[22] D. Halperin. Arrangements. In J. E. Goodman and J. O’Rourke, editors,Hand-
book of Discrete and Computational Geometry, chapter 24, pages 529–562.
Chapman & Hall/CRC, 2nd edition, 2004.

[23] I. Hanniel and D. Halperin. Two-dimensional arrangements in CGAL and adap-
tive point location for parametric curves. InProc. 4th Workshop Alg. Eng. (WAE),
pages 171–182, 2000.

[24] S. Hert, M. Hoffmann, L. Kettner, S. Pion, and M. Seel. Anadaptable and
extensible geometry kernel. InProc. 5th Workshop Alg. Eng. (WAE), pages 79–
90, 2001.

[25] S. Hirsch and D. Halperin. Hybrid motion planning: Coordinating two discs
moving among polygonal obstacles in the plane. In J.-D. Boissonnat, J. Burdick,
K. Goldberg, and S. Hutchinson, editors,Algorithmic Foundations of Robotics
V, pages 239–255. Springer, 2003.

[26] L. Kettner, K. Mehlhorn, S. Pion, S. Schirra, and C. Yap.Classroom examples of
robustness problems in geometric computations. InProc. 12th Europ. Sympos.
Alg. (ESA), pages 702–713, 2004.

[27] J. Keyser, T. Culver, D. Manocha, and S. Krishnan. MAPC: a library for efficient
manipulation of algebraic points and curves. InProc. 15th Annu. ACM Sympos.
Comput. Geom. (SCG), pages 360–369, 1999.

[28] K. Mehlhorn and S. Näher. LEDA: A Platform for Combinatorial and Geometric
Computing. Cambridge University Press, Cambridge, UK, 2000.

[29] K. Mulmuley. A fast planar partition algorithm, I.Journal of Symbolic Compu-
tation, 10(3-4):253–280, 1990.

[30] N. Myers. Traits: A new and useful template technique.C++ Gems, 17, 1995.

[31] V. Rogol. Maximizing the area of an axially-symmetric polygon inscribed by a
simple polygon. Master’s thesis, Technion, Haifa, Israel,2003.

[32] S. Schirra. Robustness and precision issues in geometric computation. In J.-
R. Sack and J. Urrutia, editors,Handbook of Computational Geometry, pages
597–632. Elsevier Science Publishers B.V. North-Holland,Amsterdam, 1999.

[33] J. G. Siek, L.-Q. Lee, and A. Lumsdaine.The Boost Graph Library, User guide
and reference manual. Addison-Wesley, 2002.

[34] J. Snoeyink and J. Hershberger. Sweeping arrangementsof curves. InProc. 5th
Annu. ACM Sympos. Comput. Geom. (SCG), pages 354–363, 1989.

[35] R. Wein. High-level filtering for arrangements of conicarcs. InProc. 10th Europ.
Sympos. Alg. (ESA), pages 884–895, 2002.

[36] R. Wein and E. Fogel. The new design of CGAL’s arrange-
ment package. Technical report, Tel-Aviv University, 2005.
http://www.cs.tau.ac.il/ efif/applications/Arr new design.pdf.

[37] C. K. Yap. Robust geometric computation. In J. E. Goodman and J. O’Rourke,
editors,Handbook of Discrete and Computational Geometry, chapter 41, pages
927–952. Chapman & Hall/CRC, 2nd edition, 2004.

33

Reference Counting in Library Design – Optionally and with
Union-Find Optimization

Lutz Kettner
Max-Planck Institut Informatik

Stuhlsatzenhausweg 85
66123 Saarbrücken, Germany

kettner@mpi-sb.mpg.de

Abstract

Reference counting has been used and described in abundance. We
present novel ideas aimed at class implementations in library de-
sign: (1) In library design, generic classes can have variable size,
such that an optimal decision for or against reference counting is
not possible. Wepostponethis decision to the place of class use.
(2) In a context, where equality comparison for the case of equality
is expensive, e.g., for exact algebraic number representations, we
unify representationswhenever equality is detected, thus effectively
memoizing equality tests. We explain an efficient implementation
based on an union-find data structure. (3) Reference counting and
polymorphic class hierarchiescan be combined reusing the pointer
in the handle class for the polymorphism. A policy-based generic
C++ solution realizes all ideas.Standardallocators manage all dy-
namic memory.

Categories and Subject Descriptors

D.1.m [Programming Techniques]: Miscellaneous

General Terms

software library design

1 Introduction

Reference counting has been used and described in abundance. The
principle idea is that a dynamically managed resource tracks the
number of its users in a reference counter. When the count reaches
zero the resource can be released.

In the context of C++, reference counting is frequently presented
for smart pointers and string classes; in both cases managing dy-
namically allocated memory. I am interested in the principal way it
is used in string classes. But, let me contrast it to its use insmart
pointers first.

Smart pointers are commonly presented as a solution for owner-
ship and resource management problems that plain C/C++ pointers
have with dynamically allocated memory. They often preserve the
look of reference semantic, at least with (overloaded implementa-
tions of) theoperator->() and operator*() . Because of that
they offer less opportunities for encapsulation and protection. For
example, the copy-on-write strategy for achieving value semantics
for mutable, reference-counted objects is not easy to realize.

The use of reference counting in common string classes is moti-

vated by the fact that strings are copied often and are usually suffi-
ciently long, such that reference counting works as an optimization
technique. Copying strings becomes extremely efficient forthe cost
of a small overhead elsewhere. For strings, this cost is particularly
negligible since string classes use dynamic memory anyway (other-
wise the main efficiency concern for reference counting). Typically,
string classes have value semantics. Reference counting isan im-
plementation detail that does not affect the observable interface. We
call the class that contains the pointerhandle class, in distinction to
smart pointer classes, following the convention from Murray [16],
Mehlhorn, and Näher [14, Sect. 13.7].

String implementations offer their functionality in the handle class,
e.g., with member functions, while smart pointers refer to the rep-
resentation class. For example, the length of a string iss.size()
while the size of some smart-pointed object isp->size() . Switch-
ing a class to a handle design allows to reuse existing code based on
that class while switching to smart pointers requires code changes.

Postpone the Decision

As a library designer, I am particularly interested in the optimiza-
tion potential of reference counting for classes in a library. How-
ever, the effectiveness is not clear for a library developer. The effec-
tiveness depends on the cost for copying (e.g., proportional to the
size of the object) versus the cost for dynamic memory allocation
plus reference count increments, decrements, and additional space
consumption. In addition to thesestatic costs, we have thedynamic
behavior of the program; how often is the object copied compared
to the other operations?

For conventional libraries, the static cost for reference counting is
often conclusive to decide for or against reference counting: Very
small objects are never reference-counted and sufficientlylarge
ones always, because for them the efficiency loss would be a few
percent at most. In contrast, for generic libraries with parameter-
ized objects, the static cost is no longer (easily) identifiable in the
library itself.

The library designer cannot decide the use of reference counting.
Instead, the library user can and should decide. To support this,
I present here a solution that a library designer writes an object
once, parameterized with a policy template parameter that selects
between the two options.

I am interested in geometric algorithms. To implement them ro-
bustly yet efficiently, we use exact arithmetic as well as floating-
point arithmetic with controlled rounding errors. Flexibility in the
coordinate number type is one prime example where a generic

34

2D point class can be quite large, better using reference count-
ing, or very small, better not using reference counting, respectively.
Schirra measures the effect of many such choices in his extensive
study [17].

Unify Representations

Exact arithmetic that deals with roots, or algebraic numbers in
general, has the interesting asymmetry that detecting equality is
much more costly than detecting inequality. This holds for solu-
tions based on separation bounds, such as LEDA reals [14, 18] and
CORE [11], as well as for symbolic solutions.

Exact arithmetic number types use reference counting because,
based on arbitrary precision integers, they are almost always large.
Assume we detect (costly) that two numbers are equal, then we
can apply the following optimization: We drop one of the repre-
sentations and link its handle to the other (by observable behavior
identical) representation. The next equality comparison of these
two handles detects the identical representation and immediately
returns.

Of course, this optimization applies to other objects as well. It is
effective if (1) the equality test is expensive enough to justify some
additional bookkeeping, (2) sufficiently many equal but notiden-
tical objects are tested for equality, and (3) they are tested more
than once. It is a quite clever variant of memoization. Compared to
caching it has little overhead in bookkeeping and no issues of life-
time or capacity of the cache. Note that it memoizes only equality,
not inequality, which is particularly clever for the exact arithmetic
example where the memoized result is the expensive one. Comple-
mentary, exact representations of algebraic numbers that use isolat-
ing intervals would refine these intervals to be disjoint forthe case
of inequality and then memoize those refined intervals.

We cannot just drop one representation if potentially otherhandles
point to it as well. Reference counting protects us from deleting
it, but we would like to have the other handles also profit fromthe
change of representation. The problem can be cast into the well
known union-find problem. Essentially, the old representation gets
a pointer to the new representation and the handles follow this chain
of pointers in the next query. Two optimizations are necessary to
make it efficient, explained in detail in Section 3.

We use the policy class mentioned above to select now betweenthe
following three options: no reference counting, regular reference
counting, and reference counting with the union-find optimization
for the equality comparison.

Class Hierarchies and Other Design Options

Reference counting is usually explained for a single representa-
tion class, yet, a representation class hierarchy works as well. The
pointer in the handle is then a pointer to the base class type and
points to derived objects. However, some technical machinery is
needed to really combine it elegantly with the other orthogonal
choices.

Value semantics is not immediately available with reference count-
ing. One solution is to make objects non-mutable (atomic). Another
solution is the copy-on-write strategy, which is supportedin our de-
sign as well. Lastly, one can choose to adopt reference semantics
instead.

For memory allocation, we offer a template parameter for a stan-
dard allocator. It will be used for the single representation class as
well as for the representation class hierarchy.

We need to answer the question where to put the reference count.
The intrusivesolution places the reference counter in the represen-
tation class. Non-intrusive solutions allocate a separatecounter,
e.g., adding a second pointer to the handle or a forwarding pointer
from the counter to the representation class. Flexibility in this ques-
tion is relevant for generic smart pointers, but we aim at library
designers who develop representation classes. So, we choose the
intrusive method for its obvious advantages of smaller overhead,
which are also documented in the runtime benchmarks reported1

for the BOOST smart pointer library. Of course, we offer conve-
nient ways to add the reference counter easily.

Paper Outline

The contribution of this paper, besides the novel ideas, is aconcrete
solution to get all aspects in one coherent design that is easy to use.
However, the different aspects interact in non-trivial ways and the
final classes are quite intricate. Therefore, I start with a presentation
of two examples corresponding to the two main uses of the design;
either with a single representation class (monomorphic use) or with
a class hierarchy (polymorphic use). After that, I will present a so-
lution that covers the monomorphic use, and explain the changes
necessary to handle the polymorphic use. For completeness,the
final solution is in the appendix. Still, several details areomitted
here that do not contribute to the understanding of the design and
its realization, such as an own namespace, additional constructors,
precondition checks, etc., and names have been changed and short-
ened for the presentation here compared to the implementation that
we use in our EXACUS C++ libraries, which are released2 and can
be studied. Before presenting the example uses, I give reference
to related work and introduce the union-find data structure and its
application here.

2 Related Work

I can trace the origins of our handle-representation implementa-
tion back to LEDA[14, Sect. 13.7], the C++ Library of Efficient
Data Types and Algorithms. LEDA provides two base classes;
handle base for deriving handle types, andhandle rep for de-
riving representations. It is a non-templated solution with overhead
implied by a virtual destructor. The solution in LEDA has since then
improved to a templated solution.

Koenig and Moo present two plain handle implementations, one in-
trusive and one non-intrusive [13, Chap. 6,7]. All handle classes
look similar. Yet, differences can be seen, for example, in the as-
signment operator, which shows great similarities betweenKoenig
and Moo’s solution, LEDA’s and ours, in that it increments one rep-
resentation before decrementing the other, elegantly avoiding any
special case handling of the self-assignment problem.

CGAL, theComputational Geometry Algorithms Library3 [6, 12],
uses a templated handle-representation design from the beginning
(inspired by LEDA’s experience). Initially, all classes in the geomet-
ric kernel were reference-counted. Schirra’s study [17] confirmed

1http://www.boost.org/libs/smart_ptr/smart_ptr.
htm

2http://www.mpi-inf.mpg.de/EXACUS/
3http://www.cgal.org/

35

23 6

5

4

1

2

3

6

54

1

2

3

6

54

1

Figure 1. Example execution in a union-find data structure,
from left to right: Two sets, one set afterUNION(1,6), the
same set afterFIND(4). The dashed arrows show the relinking
caused byFIND(4).

that this penalized instantiations with small number types. A par-
allel series of kernel objects was introduced and later the handle-
representation design refined to merge these implementations.

When we started in 2001 the EXACUS project, Efficient and Ex-
act Algorithms for Curves and Surfaces[2], I developed the de-
sign presented here. Later in the project, the demand for supporting
class hierarchies came up. We compute the arrangement of quadrics
in space by projecting silhouette curves and pairwise intersection
curves into the plane [3]. Silhouette curves are degree two alge-
braic curves (conics) and intersection curves are (special) degree
four algebraic curves. The difference between these curve types
is essential for the correctness and efficiency of our solution. The
natural design solution is a polymorphic class hierarchy.

C++ programming idioms for handle classes, smart pointers, and
reference counting can be found in many C++ text books, rang-
ing from introductions to expert discussions. The older book by
Coplien [4] introduces reference-counted handles, intrusive and
non-intrusive, as well as a smart pointer for the example of astring
class. The older book by Murray [16] contains a description of
a string class that uses the handle-representation design,reference
counting, and copy-on-write. Horstmann offer an earlier descrip-
tion of smart pointers with reference counting in C++ [9]. Meyers
[15, Item 28 & 29] offers a more basic discussion of smart pointers
and intrusive and non-intrusive reference counting. Stroustrup dis-
cusses a reference-counted string class and a handle-representation
design briefly [20, Sect. 15.7]. Josuttis sketches a smart pointer
implementation with reference counting to address the question
of reference semantics for element storage in standard container
types [10, Sect. 6.8]

Vandevoorde and Josuttis describe smart pointers and reference
counting [21]. For reference counting, they introduce a policy class
for the counter, whether it can be intrusive or not, and whether it
needs to protect against concurrent access with threads. Another
policy handles deallocation.

Alexandrescu dedicates a chapter in his book [1, Chap. 7] to smart
pointers available in his Loki library. He discusses ownership is-
sues, implicit conversion, test and comparison operators,and multi-
threading issues. He supports polymorphism and consequential has
a policy class that handles the issue of cloning a representation.
He mentions copy-on-write, but explains that smart pointers are the
wrong place to realize it, since the essential distinction between
read-only and write accesses is not possible.

The handle-representation design is an instance of the proxy pattern
in the book by Gamma et al. [7], where reference counting and
copy-on-write are mentioned as well.

The C++ standard library contains theauto ptr smart pointer tem-
plate. BOOST’s smart pointer library provides intrusive and non-

ptr_
ptr()

ref_count
union_size
parent
rep.

rep. ref_count
rep.

ptr_
ptr()

ptr()

Figure 2. Layout of the handle-representation according tothe
different policies: (left) In-place layout without explicit pointer
stored nor dynamically allocated memory. (middle) Conven-
tional invasive layout of reference counter with representation.
(right) Conventional layout enhanced with a counter for the
union size and a parent pointer.

intrusive reference counting.1 Their proposal is in the process for
the next C++ standardization.

3 Union-Find Optimization

A union-find data structure (a.k.a. disjoint sets [5] or partition [14])
maintains a partition for a setK of n keys and a unique representa-
tive ρ(A) for each setA in the partition. It provides two operations:
(1) Forx ∈ K, FIND(x) returns the unique representativeρ(X) for
the setX in the partition that containsx. (2) For two sets,X and
Y, in the partition, UNION(ρ(X),ρ(Y)) replaces the two sets with
the new setX∪Y in the partition with a corresponding new unique
representativeρ(X∪Y).

An optimal implementation represents the sets as rooted trees with
the keys as nodes and the root node as unique representative.The
FIND-operation follows the parent pointers and returns the root
node. The UNION-operation links one root node under the other
root node. This implementation becomes worst-case optimalif both
operations are made a bit smarter: The FIND-operation has cost pro-
portional to the path length to the root node. We performpath com-
pression, i.e., each node traversed during a find will be re-linked to
point directly to the root node. This does not change the costof this
FIND-operation, but subsequent FIND-operations can be faster. The
UNION-operation has constant cost, but it increases the path lengths
for the tree linked under the other root node. We use thelinking-by-
weightstrategy,4 in which the tree with fewer nodes is linked below
the root node of the other tree. Figure 1 illustrates both operations.

Performing a sequence of UNION-operations andm FIND-
operations on a set of sizen runs onO(n+mα(m,n)) time, where
α(m,n) is the slowly growing inverse Ackerman function that is
equal to 4 for all practical purposes of the universe. For an elegant
proof see Seidel and Sharir [19].

We apply the union-find data structure to the handle-representation
scheme with reference counting. Both, the handle and the repre-
sentation, are nodes in the rooted tree. The pointer in the handle
corresponds to a parent pointer, which always points to a represen-
tation, i.e., handles never become the representative rootnode. The
representation will be enriched with a parent pointer and a counter
for theunion sizedefined as the number of all handles and represen-
tations that are in the subtree rooted at a representation (including
it). The representative root in the tree is the current representation
valid for all handles in the tree. Other representations might still
exist in the tree because other handles and representationspoint to
them and have not yet been processed in a path compression to link
directly to the root node. If they eventually get re-linked,the refer-
ence count will drop to zero and the representation will be released

4Compared to thelinking-by-rankstrategy, which would be op-
timal as well and similarly easy to realize.

36

and removed from the tree.

The memory layout of the different handle-representation choices
is illustrated in Figure 2. The difference between in-placeand refer-
ence counting is abstracted away behind aptr() member function
in the handle class that gives access to the representation.Figure 3
shows this data structure in action with a sequence of snapshots on
a small example.

The reference count becomes redundant; a representation can be
released if its union size drops to one. However, we keep the rep-
resentation count and its processing in the implementationand pre-
sentation, because the union size is an optional feature andread-
ability would suffer.

4 Monomorphic-Use Example

We illustrate our design with a small example of a single repre-
sentation class that holds an integer value. Representation classes
typically are containers for data members and constructors, nothing
more. (We ignore access protection.)

struct Int_rep {
int val;
Int_rep(int i = 0) : val(i) {}

};

The common functionality for handle classes is factored into the
Handle base class template. Its full signature is:

template <
typename T,
typename Policy = Handle_without_union,
typename Alloc = std::allocator<T> >

class Handle;

T is the representation type that the handle manages. In the
monomorphic case,T does not contain a reference counter yet.
The counter is added automatically by theHandle class template.
Policy is the policy class that determines whether we use reference
counting at all and, if so, if we also use the union-find optimization.
The default value selects reference counting without the union-find
optimization.Alloc is a standard allocator with suitable default.

We derive our handle class fromHandle<Int rep> . We add a con-
structor that calls the base class constructor, which in turn calls
the representation class constructor at the point of allocation. This
avoids unnecessary construction of temporaries on the way.It is
realized with template constructors, which have the limitation to be
only available for up to a fixed number of arguments, in our own
library currently for up to 10 arguments. There exists another way
of initializing representations that I skip in this presentation.

struct Int_handle : public Handle<Int_rep> {
typedef Handle<Int_rep> Base;
Int_handle(int i = 0) : Base(i) {}
...

We implement two member functions: A simple access function
illustrates the access to the stored value through the (protected)
ptr() member function in the base class, which internally performs
the FIND-operation if required. So, each data access triggers path
compression. A corresponding set member function illustrates the
copy-on-write strategy.

int value() const { return ptr()->val; }

Int i=42;
Int j=42; Int j1=j; // increase ref-count
Int k=42; Int k1=k, k2=k, k3=k; // and union size
Int l=42; Int l1=l, l2=l, ..., l8=l;

j k li

j k li

i

i

i

1
0

3

6

j k l

4 5 10

3 9 10

3 8 19

j k l

j k l

197

1
2 19

4 93

2 9

2

2

3

6

5 11

4 12

14

i == j:

j == k:

k == l:

j.value():

i.value():

(a)

(b)

(c)

(d)

(e)

d
e

le
te

d

−> union(i,j)

−> union(j,k)

−> union(k,l)

−> find(j)

−> find(i)

Figure 3. Example of a detailed trace of the union-find data
structure at work. We assume a classInt similar to the exam-
ple in Section 4. Following the layout on the right of Figure 1,
the representation stores a reference count, a union size, and a
parent pointer to another representation.

37

void set_value(int i) {
copy_on_write();
ptr()->val = i;

}
...

We conclude with the equality operator and its use of the union-
find optimization. Theunify member function in the base class is
called for an argumenti if the representation ofi has been found to
be equivalent to the own representation. Depending on the policy
template argument, this call will do nothing, or it will leadto the
simplification that one representation will be replaced by the other
as described in the previous section. Note that the UNION-operation
determines from the union sizes which representation will be re-
placed by which. This is of no concern in many applications, but if
it does, one could look at the union sizes beforehand and manually
preserve the preferred representation. Although reference-counted,
theconst& in the parameter passing is recommended, because oth-
erwise parts of the union-find optimization gain would be delayed
to the next FIND-operation on the calling object (since the union
would work on a copy of the handle). A note on constness: I de-
signed the classes for the use in a value semantic context where the
union-find optimization is an implementation decision not affecting
the interface. As such, it is allowed to work on its internal data also
for constant objects.

bool operator==(const Int_handle& i) const {
bool equal = (value() == i.value());
if (equal)

unify(i);
return equal;

}
};

So far, our handle class has a fixed reference counting policy. A
template parameter for the policy (and analogously for the alloca-
tor) makes it more flexible:5

template < typename Policy = Handle_without_union>
struct Int_handle : public Handle< Int_rep, Policy>

With such an implementation, our handle class has value semantics.
The default implementations of copy construction and assignment
perform correctly. The difficulties of dynamic memory allocation
are encapsulated in theHandle class template.

In CGAL, Geometric Kernelclasses and manyBasic Library
classes, such as Nef polyhedra [8], use a similar handle-
representation implementation with value semantics.Geo-
metric Kernel objects in the CGAL::Cartesian and CGAL::
Homogeneous kernels are reference-counted and in theCGAL::
Simple cartesian andCGAL::Simple homogeneous kernels are
non-reference-counted. Kernel objects are immutable and do not
use copy-on-write. The Nef polyhedra use reference counting with
copy-on-write. The unification strategy is not available.

In the EXACUS libraries, many classes use precisely this handle-
representation implementation with reference counting and value
semantics.

5Note that now calls to member functions of theHandle tem-
plate base class need athis-> prefix, a consequence of thetwo-
phase name lookuprule for templates [21, Sect. 9.4].

5 Polymorphic-Use Example

We define a small class hierarchy of two representation classes,
again just holding an integer value. In the previous monomor-
phic example, we were able to let theHandle class template define
generically the type that contains the representation class together
with the intrusive reference count. Here, theHandle class template
does not know the class hierarchy and thus cannot provide this con-
venience. Instead, we require now that the root of the class hierar-
chy is derived from a base class that provides the reference count.
This is not a restriction in our context; the design presented here
is not a generic smart pointer that users apply to already existing
classes, rather it is a technique for a library developer to apply to
newly developed classes.

The base class containing the reference count actually depends on
the Policy of the Handle class template. Furtheron, it needs the
allocator as template argument, which will be explained later in de-
tail. This leads to the following base class definition for our root in
our part of the class hierarchy. Besides the base class, the difference
to the monomorphic example is the required conventionalclone()
member function:

template <typename Policy, typename Alloc>
struct Int_rep
: public Policy::Hierarchy_base<Alloc>::Type {

int val;
Int_rep(int i = 0) : val(i) {}
virtual Ref_counted_hierarchy<Alloc>* clone() {

return new Int_rep(*this);
}
virtual int get_val() const { return val; }
virtual void set_val(int i) { val = i; }

};
template <typename Policy, typename Alloc>
struct Int_rep2 : public Int_rep< Policy, Alloc> {

int val2;
Int_rep2(int i)

: Int_rep<Policy,Alloc>(i), val2(0) {}
virtual Ref_counted_hierarchy<Alloc>* clone() {

return new Int_rep2(*this);
}
virtual int get_val() const { return val2; }
virtual void set_val(int i) { val2 = i; }

};

We turn to the handle implementation. In the monomorphic use, we
pass constructor arguments to theHandle class template, which in
turn usesAlloc to allocate and construct the representation. This
does not work here. We have to be able to create any of the derived
representation classes, which is best done in the handle constructor
with the new operator. Nonetheless, we want to use the allocator
for memory management, which is the reason why we pass it to the
base class of the representation class hierarchy. This baseclass re-
defines thenew anddelete operators to use the allocator. (The al-
locator of theHandle class template is not used in this setting.) We
implement two constructors in the handle class as a simple means
to select between the two possible representation classes.

template < typename Policy,
typename Alloc = std::allocator<char> >

struct Int_handle
: public Handle< Int_rep<Policy,Alloc>, Policy>

{
typedef Int_handle<Policy,Alloc> Self;

38

typedef Handle< Int_rep<Policy,Alloc>, Policy>
Base;

Int_handle(int i = 0)
: Base(new Int_rep<Policy,Alloc>(i)) {}

Int_handle(int i, int j)
: Base(new Int_rep2<Policy,Alloc>(i+j)) {}

int value() const { return ptr()->get_val(); }
void set_value(int i) {

copy_on_write();
ptr()->set_val(i);

}
bool operator==(const Self& i) const {

bool equal = (value() == i.value());
if (equal)

unify(i);
return equal;

}
};

One may ask, if the differences between the monomorphic use
and the polymorphic use are so big, why do we use the same
Handle class template? We still reuse plenty of the orthogonal
aspects in theHandle class template, which is illustrated by the
fact that the member functions in the handle class are identical
in both examples. In particular, copy-on-write and the unification
work the same. Of course, one choice is not possible in the poly-
morphic case, namely to not use dynamically allocated represen-
tations (Handle in place policy), because we would lose the in-
ternal pointer used for the realization of polymorphism in the C++
language. Not explained in this paper, but all such constraints are
checked statically at compile time.

The affine transformation classes in the CGAL Geometric Kernel
use a similar handle-representation implementation with apolymor-
phic class hierarchy of specialized representations for translation,
scaling, and others [6]. In EXACUS, the arrangement of quadrics
in space uses this solution for the polymorphic representation of
projected silhouette curves and pairwise intersection curves [3].

6 Handle Class Template for Monomorphic
Use

We offer three policy classes for thePolicy parameter.

• Handle in place : the handle stores the representation di-
rectly in place without reference counting and without dy-
namic memory allocation. It cannot be used together with
a hierarchy of polymorphic representation classes, since the
necessary pointer is now missing in the handle.

• Handle without union : regular reference counting, i.e.,
without the union-find optimization.

• Handle with union : reference counting with the union-find
optimization.

The first policy is actually not used as a policy class in the generic
Handle class template. It is used to select a specialization, which
mostly consists of empty stub implementations. The specialization
is listed in Appendix A.2. The other policies deal with the union-
find optimization (two static member functions) and two dependent
types. The dependent types are actually member templates and sim-
ilar to the rebind mechanism of the standard allocator interface.

• The type expressionPolicy::Rep bind<T,is ch>::Rep

shall define the representation type including the intrusive
reference counter. The Booleanis ch is false if the type
T is not derived from the base class required for the poly-
morphic class hierarchy and true otherwise. Ifis ch is
true, Rep shall be equal toT, otherwise it shall be equal to
Ref counted<T> if no union-find optimization is used and
equal toRef counted uf<T> if the union-find optimization
is used.

• The type expressionPolicy::Hierarchy base<Alloc>
::Type shall be the base class suitable for deriving a poly-
morphic class hierarchy, see the example above.

• The static member functionunify(h,g) acting on two han-
dlesh andg shall perform the union step, if applicable for this
policy.

• The static member functionfind(h) acting on one handleh
shall return a pointer to the currently valid representation. It
shall perform the find step with the necessary side effects on
all involved representations.

The Ref counted class template combines the intrusive reference
counter with the representation typeT. This is the actual representa-
tion a handle refers to. The template with its few supportivemem-
ber functions is self-explanatory.

template <typename T>
class Ref_counted {

mutable unsigned int count; // reference counter
T rep; // representation

public:
typedef Ref_counted<T> Self;
typedef T* Rep_pointer;

Ref_counted() : count(1) {}
Ref_counted(const T& t) : count(1), rep(t) {}
Ref_counted(const Self& r):count(1),rep(r.rep){}
Rep_pointer base_ptr() { return &rep; }
void add_reference() { ++count; }
void remove_reference() { --count; }
bool is_shared() const { return count > 1; }
int union_size() const { return 1+count; }
void add_union_size(int) {}

};

Analogously, theRef counted uf class template combines the rep-
resentation typeT with a reference counter, a counter for the current
union size, and a parent pointer. The representation is onlyvalid
for roots in the union-find data structure, in which case the parent
pointer is null.

template <typename T>
class Ref_counted_uf {
public:

typedef Ref_counted_uf<T> Self;
typedef T* Rep_pointer;
friend class Handle_with_union;

private:
mutable unsigned int count; // reference counter
mutable Self* parent; // parent or 0
mutable int u_size; // union set size
mutable T rep; // representation

public:
Ref_counted_uf() : count(1),parent(0),u_size(2){}
Ref_counted_uf(const T& t)

: count(1), parent(0), u_size(2), rep(t) {}

39

Ref_counted_uf(const Self& r)
: count(1), parent(0), u_size(2),rep(r.rep){}

... // identical functions as in Ref_counted
bool is_forwarding() const { return parent != 0;}
int union_size() const { return u_size; }
void add_union_size(int a) { u_size += a; }

};

We begin with a preliminary implementation of theHandle class
template neglecting polymorphic class hierarchies. We explain the
necessary changes for the polymorphic use in the next section. The
complete solution is in Appendix A. We have already explained
the template signature in Section 4. It follows a type declaration
section with the noteworthyRep type for the representation and the
allocator that is rebound to theRep type, which might differ fromT.
The Rep pointer pointer type is in the monomorphic use always
T* . The return type offind is Rep pointer .

template <typename T,
typename Policy = Handle_without_union,
typename Alloc = std::allocator<T> >

class Handle {
public:

typedef Handle< T, Policy, Alloc> Self;
typedef Policy Handle_policy;
typedef Alloc Allocator;
typedef typename Policy::template Rep_bind< T,

false> Bind;
typedef typename Bind::Rep Rep;
typedef typename Rep::Rep_pointer Rep_pointer;
typedef typename Alloc::template

rebind<Rep>::other Rep_alloc;
friend class Handle_without_union; // policies
friend class Handle_with_union;
...

It follows the only data member, a pointer to the representation,
as well as a static allocator variable, object allocation, and object
release (if the reference count drops to zero).

private:
mutable Rep* ptr_;
static Rep_alloc allocator;
static Rep* new_rep(const Rep& rep) {

Rep* p = allocator.allocate(1);
allocator.construct(p, rep);
return p;

}
void remove_reference() {

Policy::find(*this); // ptr_ is now valid rep
if (! is_shared()) {

allocator.destroy(ptr_);
allocator.deallocate(ptr_, 1);

} else {
ptr_->remove_reference();
ptr_->add_union_size(-1);

}
}
...

Next is the protected interface for the derived handle class. It sup-
ports the access to the representation through theptr() member
function, which always invokes the FIND-operation. Also the other
member functions,unify andcopy on write , have been used in
the examples above.

protected:
T* ptr() {

return static_cast<T*>(Policy::find(*this));
}
const T* ptr() const {

return static_cast<const T*>(
Policy::find(*this));

}
void unify(const Self& h) const {

Policy::unify(*this, h); // forward to policy
}
void copy_on_write() {

Policy::find(*this); // ptr_ is now valid rep
if (is_shared()) {

Rep* tmp_ptr = new_rep(* ptr_);
ptr_->remove_reference();
ptr_->add_union_size(-1);
ptr_ = tmp_ptr;

}
}
...

The public interface implements the important four parts for re-
source management classes: constructors, copy-constructor, de-
structor, and assignment operator.

public:
Handle() : ptr_(new_rep(Rep())) {}
Handle(const Self& h) {

Policy::find(h); // ptr_ is now valid rep
ptr_ = h.ptr_;
ptr_->add_reference();
ptr_->add_union_size(1);

}

template <class T1> explicit Handle(const T1& t)
: ptr_(new_rep(Rep(T(t)))) {}

... // more constructor templates here

˜Handle() { remove_reference(); }
Self& operator=(const Self& h) {

Policy::find(h); // ptr_ is now valid rep
h.ptr_->add_reference();
h.ptr_->add_union_size(1);
remove_reference();
ptr_ = h.ptr_;
return *this;

}
};

7 Extension for Polymorphic Use

A subtle difference lies in theRep pointer definition. It does not
point toT, which would be the user base class, but to our base class
provided for the user, theRef counted hierarchy class template.
It provides the reference count and the re-definednew anddelete
operators to use the allocator template parameter.

template <typename Alloc = std::allocator<char> >
class Ref_counted_hierarchy {

mutable unsigned int count; // reference counter
static Alloc alloc;

public:
void* operator new(size_t bytes) {

return alloc.allocate(bytes);

40

}
void operator delete(void* p, size_t bytes) {

alloc.deallocate((char*)p, bytes);
}
typedef Ref_counted_hierarchy<Alloc> Self;
typedef Self* Rep_pointer;

Ref_counted_hierarchy() : count(1) {}
Ref_counted_hierarchy(const Self&) : count(1) {}
virtual ˜Ref_counted_hierarchy() {}

// Return a copy of myself: Write in all classes:
// return new Derived_type(*this);
virtual Self* clone() = 0;
Rep_pointer base_ptr() { return this; }
void add_reference() { ++count; }
void remove_reference() { --count; }
bool is_shared() const { return count > 1; }
int union_size() const { return 1+count; }
void add_union_size(int) {}

};

The base class template extends for the union-find optimization to
Ref counted hierarchy uf to contain the union size and the par-
ent pointer in the obvious way, analogously toRef counted uf in
the previous section.

The main difference to the monomorphic case is a new pro-
tected constructor accepting pointers to newly allocated repre-
sentations. Many other differences are in the details of allocat-
ing and deallocating the representations. The design uses tem-
plate meta-programming to detect, if the template argumentpro-
vided for the parameterT is derived from our classes. Then
we work in the polymorphic-use version or otherwise we work
in the monomorphic-use version. In particular, we test for a
derivation relationship among two classes and use helpers,such as
Type from int<i> described by Alexandrescu [1], to select among
overloads of a function.

8 Union-Find Policy Classes

Defined as an empty struct, theHandle in place class is not re-
ally a policy class since its purpose is to select a specialization of
theHandle class template. For the other policy classes we omit how
the dependent types are selected with template meta-programming
techniques, and refer to Section 6 for their specification. What re-
mains are theunify and find member function templates. They
are both trivial for theHandle without union policy class:

struct Handle_without_union {
template <typename H>
static void unify(const H& h, const H& g) {}
template <typename H>
static typename H::Rep_pointer find(const H& h){

return h.ptr_->base_ptr();
}

};

TheHandle with union policy class has an additional asymmetric
unify member function whose first argument is the larger set com-
pared to the second argument. All three member function templates
have handles as arguments and switch to the representationshrep
andgrep , respectively. They implement the algorithms explained
in Section 3:

struct Handle_with_union {
template <typename H>
static void unify_ls(const H& h, const H& g) {

// |H| >= |G|, let g point to h’s rep
typename H::Rep* hrep = h.ptr_;
typename H::Rep* grep = g.ptr_;
grep->add_union_size(-1);
if (grep->is_shared()) { // grep remains

grep->remove_reference();
hrep->add_reference();
hrep->add_union_size(grep->union_size());
grep->parent = hrep;

} else {
g.delete_rep(grep); // grep goes

}
// redirect handle g and incr. hrep’s counter
g.ptr_ = hrep;
hrep->add_reference();
hrep->add_union_size(1);

}
template <typename H>
static void unify(const H& h, const H& g) {

if (find(h) != find(g)) { // safety check
if (h.ptr_->union_size()

> g.ptr_->union_size())
unify_ls(h, g); // make g point to h’s rep

else
unify_ls(g, h); // make h point to g’s rep

}
}
template <typename H>
static typename H::Rep_pointer find(const H& h){

typedef typename H::Rep Rep;
if (h.ptr_->is_forwarding()) {

Rep* new_rep = h.ptr_; // find new valid rep
while (new_rep->parent != 0)

new_rep = static_cast<Rep*>(
new_rep->parent);

Rep* rep = h.ptr_;
while (rep != new_rep) { // path compression

Rep* tmp = static_cast<Rep*>(rep->parent);
if (rep->is_shared()) { // rep remains

rep->remove_reference();
if (tmp != new_rep) {

// re-link rep to the new_rep
rep->parent = new_rep;
new_rep->add_reference();

}
} else { // rep goes

h.delete_rep(rep);
}
rep = tmp;

}
h.ptr_ = new_rep; // hook h to new_rep
new_rep->add_reference();

}
return h.ptr_->base_ptr();

}
};

9 Discussion

The presented design of a handle-representation implementation in
C++ features the novel ideas of a smart union-find optimization and

41

postpones the decision for reference counting to the library user.
The implementation works seamlessly together with standard al-
locators and polymorphic class hierarchies. My emphasis was on
the ease of use and readability of handle classes and representation
classes realized with this design (c.f. Section 4 and 5). Monomor-
phic and polymorphic use can not be exchanged easily, but that is
not to be expected unless the monomorphic use loses some of its
current ease of use.

The presented implementation was developed for the EXACUS li-
braries, representing 120 thousand lines of C++ library and test
code, and is since 2001 successfully in use for many classes.A
similar implementation is in use in the CGAL project for quite some
time.

The implementation is exception safe, but does not support multiple
threads, which could be added with straightforward lockingtech-
niques. Another option, which I have not tried, could be garbage
collection instead of reference counting.

10 Acknowledgments

I thank Kurt Mehlhorn for the union-find suggestion and Sylvain
Pion for his enthusiastic and resourceful work on the CGAL kernel.
I thank Eva Kluge for her support. I am grateful to the anony-
mous reviewers for their numerous valuable and knowledgeable
comments.

11 References

[1] A. Alexandrescu. Modern C++ Design: Generic Program-
ming and Design Patterns Applied. Addison-Wesley, 2001.

[2] E. Berberich, A. Eigenwillig, M. Hemmer, S. Hert, L. Ket-
tner, K. Mehlhorn, J. Reichel, S. Schmitt, E. Schömer, and
N. Wolpert. EXACUS: Efficient and exact algorithms for
curves and surfaces. InProc. 13th Annu. Europ. Symp. Algo.
(ESA), Oct. 2005. (to app).

[3] E. Berberich, M. Hemmer, L. Kettner, E. Schömer, and
N. Wolpert. An exact, complete and efficient implementa-
tion for computing planar maps of quadric intersection curves.
In Proc. 21th Annu. Sympos. Comput. Geom., pages 99–106,
2005.

[4] J. O. Coplien. Advanced C++ Programming Styles and
Ideoms. Addison-Wesley, 1992.

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction
to Algorithms. MIT Press, 1990.

[6] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and
S. Schönherr. On the design of CGAL, the computational
geometry algorithms library.Software – Practice and Experi-
ence, 30:1167–1202, 2000.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissidis.Design
Patterns – Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[8] P. Hachenberger and L. Kettner. Boolean operations on 3Dse-
lective Nef complexes: Optimized implementation and exper-
iments. InProc. of 2005 ACM Symposium on Solid and Phys-
ical Modeling (SPM’05), pages 163–174, Cambridge, MA,
June 2005.

[9] C. S. Horstmann. Memory management and smart pointers.
C++ Report, March, April 1993. Reprint inMore C++ Gems,

Ed. R. C. Martin, SIGS Reference Library, Cambridge Uni-
versity Press, pp. 33–50, 2000.

[10] N. M. Josuttis. The C++ Standard Library: A Tutorial and
Reference. Addison-Wesley, 1999.

[11] V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap. A coreli-
brary for robust numeric and geometric computation. InProc.
15th Annu. Sympos. Comput. Geom., pages 351–359, 1999.

[12] L. Kettner and S. Näher. Two computational geometry
libraries: LEDA and CGAL. In J. E. Goodman and
J. O’Rourke, editors,Handbook of Discr. and Comput. Geom.,
pages 1435–1463. CRC Press LLC, Boca Raton, FL, 2nd edi-
tion, 2004.

[13] A. Koenig and B. E. Moo.Ruminations on C++: A Decade
of Programming Insight and Experience. Addison-Wesley,
1996.

[14] K. Mehlhorn and S. Näher.LEDA: A Platform for Combinato-
rial and Geometric Computing. Cambridge University Press,
1999.

[15] S. Meyers.More Effective C++. Addison-Wesley, 1996.

[16] R. B. Murray. C++ Strategies and Tactics. Addison-Wesley,
1993.

[17] S. Schirra. A case study on the cost of geometric computing.
In Proc. of ALENEX’99, 1999.

[18] S. Schmitt. The diamond operator – implementation of exact
real algebraic numbers. InProc. 8th Internat. Workshop on
Computer Algebra in Scient. Comput. (CASC 2005), LNCS
3718, pages 355–366. Springer, 2005.

[19] R. Seidel and M. Sharir. Top-down analysis of path compres-
sion. SIAM Journal of Computing, 34(3):515–525, 2005.

[20] B. Stroustrup.The C++ Programming Language. Addison-
Wesley, 3rd edition, 1997.

[21] D. Vandevoorde and N. M. Josuttis.C++ Templates: The
Complete Guide. Addison-Wesley, 2003.

APPENDIX A: IMPLEMENTATION

The full implementation of theHandle class template supports
polymorphism and has a specialization for theHandle in place
policy. We skip the series of obvious forwarding template construc-
tors.

A.1 Handle Class Template

template <typename T,
typename Policy = Handle_without_union,
typename Alloc = std::allocator<T> >

class Handle {
public:

typedef Handle< T, Policy, Alloc> Self;
typedef Policy Handle_policy;
typedef Alloc Allocator;
typedef Conversion_derived_base<T,

Ref_counted_hierarchy_base> Check;
enum { is_ch = Check::is_inheritance };
typedef Type_from_int< Check::is_inheritance> CH;
typedef Type_from_int<false> T_false;
typedef Type_from_int<true> T_true;
typedef typename Policy::template Rep_bind< T,

is_ch> Bind;

42

// internal representation, i.e., T plus a ref
// count (if needed) or just T if we derive
// from the base class to support a class
// hierarchy for the representations.
typedef typename Bind::Rep Rep;
typedef typename Rep::Rep_pointer Rep_pointer;
typedef typename Alloc::template

rebind<Rep>::other Rep_alloc;
friend class Handle_without_union;
friend class Handle_with_union;

private:
mutable Rep* ptr_;
static Rep_alloc allocator;

static Rep* new_rep(const Rep& rep) {
Rep* p = allocator.allocate(1);
allocator.construct(p, rep);
return p;

}
static void del_rep(Rep* p, T_false) {

allocator.destroy(p);
allocator.deallocate(p, 1);

}
static void del_rep(Rep* p, T_true) { delete p;}
static void del_rep(Rep* p) { del_rep(p, CH());}

static Rep* clone_rep(Rep* p, T_false) {
return new_rep(*p);

}
static Rep* clone_rep(Rep* p, T_true) {

return static_cast<Rep*>(p->clone());
}
static Rep* clone_rep(Rep* p) {

return clone_rep(p, CH());
}
void remove_reference() {

Policy::find(*this); // ptr_ is now valid rep
if (! is_shared()) {

del_rep(ptr_);
} else {

ptr_->remove_reference();
ptr_->add_union_size(-1);

}
}
template <class TT>
Rep* make_from_single_arg(const TT& t, T_false){

return new_rep(Rep(T(t)));
}
template <class TT>
Rep* make_from_single_arg(TT t, T_true) {

return t; // has to be ptr convertible to Rep*
}

protected:
T* ptr() {

return static_cast<T*>(Policy::find(*this));
}
const T* ptr() const {

return static_cast<const T*>(
Policy::find(*this));

}
void unify(const Self& h) const {

Policy::unify(*this, h); // forward to policy
}
void copy_on_write() {

Policy::find(*this); // ptr_ is now valid rep
if (is_shared()) {

Rep* tmp_ptr = clone_rep(ptr_);
ptr_->remove_reference();
ptr_->add_union_size(-1);
ptr_ = tmp_ptr;

}
}
Handle(Rep* p) : ptr_(p) {} // for hierarchies

public:
Handle() : ptr_(new_rep(Rep())) {}
Handle(const Self& h) {

Policy::find(h); // ptr_ is now valid rep
ptr_ = h.ptr_;
ptr_->add_reference();
ptr_->add_union_size(1);

}
// Forwarding constructor passing its parameter
// to the representation constructor. In case of
// the class hierarchy of representation classes,
// this constructor is also chosen for pointers
// to newly allocated representations that are
// types derived from T. In that case, the ptr
// is just assigned to the internal pointer.
template <class T1>
explicit Handle(const T1& t)

: ptr_(make_from_single_arg(t, CH())) {}
... // more constructor templates here
˜Handle() { remove_reference(); }
Self& operator=(const Self& h) {

Policy::find(h); // ptr_ is now valid rep
h.ptr_->add_reference();
h.ptr_->add_union_size(1);
remove_reference();
ptr_ = h.ptr_;
return *this;

}
};

A.2 Handle Class Template Specialization

template <typename T, typename Alloc>
class Handle<T, Handle_in_place, Alloc> {
public:

typedef Handle< T, Handle_in_place, Alloc> Self;
typedef Handle_in_place Handle_policy;
typedef Alloc Allocator;
// identify T with the internal repr. Rep.
typedef T Rep;

private:
Rep rep; // store the rep in place

protected:
T* ptr() { return &rep; } // access
const T* ptr() const { return &rep; }
void unify(const Self&) const {} // NOP
void copy_on_write() {} // NOP

public:
Handle() {} // constructors
Handle(const Self& h) : rep(h.rep) {}
template <class T1>
explicit Handle(const T1& t) : rep(Rep(t)) {}
... // more template constructors here

};

43

A Rationale for Semantically Enhanced Library Languages

Bjarne Stroustrup
Department of Computer Science

Texas A&M University
College station, TX-77843

and AT&T Labs – Research

bs@cs.tamu.edu

Abstract

This paper presents the rationale for a novel approach to provid-
ing expressive, teachable, maintainable, and cost-effective special-
purpose languages: ASemantically Enhanced Library Language
(a SEL languageor a SELL) is a dialect created by supersetting a
language using a library and then subsetting the result using a tool
that “understands” the syntax and semantics of both the underly-
ing language and the library. The resulting language can be about
as expressive as a special-purpose language and provide as good se-
mantic guarantees as a special-purpose language. However,a SELL
can rely on the tool chain and user community of a major general-
purpose programming language. The examples of SELLs presented
here (Safe C++, Parallel C++, andReal-time C++) are based on
C++ and the Pivot program analysis and transformation infrastruc-
ture. As part of the rationale, the paper discusses practical problems
with various popular approaches to providing special-purpose fea-
tures, such as compiler options and preprocessors.

1 Introduction

We often need specialized languages. Researchers need to exper-
iment with new language features, such as concurrency features
[24], facilities for integration with databases [5], and graphics [4] .
Developers can sometimes gain a couple of orders of magnitude
reductions in source code size with corresponding reductions in
development time and defect rates, by using such special-purpose
languages in their intended domains. Unfortunately, such special-
purpose languages are typically hard to design, tedious to imple-
ment, expensive to maintain, and — despite their obvious utility —
tend to die young.

Using a (special-purpose) library is an obvious alternative to a
special-purpose language. However, a library cannot express or ex-
ploit semantic guarantees beyond what its host language provides.
The basic idea ofSemantically Enhanced Library Languages(SEL
Languages or simply SELLs) is that when augmented by a library,
a general-purpose language can be about as expressive as a special-
purpose language, and by subsetting that extended language, a tool
can provide about as good semantic guarantees. Such guarantees
can be used to provide better code, better representations,and more
sophisticated transformations than would be possible for the full
base language. For example, we can provide support for parallel
operations on containers as a library. We can then analyze the pro-
gram to ensure that no undesirable access to elements of those con-
tainers occurs — a task that could be simplified by enforcing aban
of languages features that happened to be undesirable in this con-
text. Finally we can perform high-level transformations (such as
parallelizing) by taking advantage of the known semantics of the

libraries.

Like a library, a SELL can benefit from the extensive educational,
tools, and library infrastructure of the base language. Therefore,
the cost of designing, implementing, and using a SELL is minus-
cule compared with a special-purpose language with a small user
base. Examples will be based on ISO standard C++ supported
by the Pivot infrastructure for program analysis and transformation
(5.2). The focus will be on templates because they provide the key
mechanism for statically type-safe expression of advancedideas in
C++.

What is called a “special-purpose language” here is often called a
domain-specific language (e.g. [10]). Distinctions can be made be-
tween the two terms, but none that appear relevant to the discussion
here, so please consider those two terms as equivalent in this con-
text.

The organization of this paper is

1. Introduction

2. State some ideals for support of software development and
maintenance.

3. Present some of the — usually fatal — problems that face new
programming languages.

4. Discuss a few alternative approaches, such as dialects and
macro languages.

5. Focus on the SELL approach and the way it can be supported
in C++ using the Pivot.

6. Sketch the design of a few SELLs: type-safe C++, Parallel
C++, and Real-time C++.

7. Conclusions

2 Ideals

For every specific problem area, we can design a special-purpose
language that exactly matches the desired syntax and semantics of
the domain and the desires of the programmers that will use that
language. In an ideal world, no general- purpose language can
match such a special-purpose language when applied in its specific
problem area. When a special-purpose language has been doneper-
fectly, there is a one-to-one correspondence between the fundamen-
tal concepts of the application domain and the language constructs.
Given that, the language constructs can be minimal and directly re-
flect the terminology of the field as found in common use and major
textbooks.

44

This is not a new ideal. Fortran did a good job at that task for arith-
metic in the 1950s and COBOL successfully attacked the business
processing needs of the time. Since then, thousands of languages
have been designed for specific domains and almost as many have
been designed to try to be able to effectively express that ideal for
less specific domain. Lisp and Simula originated the two mainap-
proaches to more directly express application domain concepts di-
rectly in code: the functional and object-oriented approaches. In
these languages, and in their numerous offspring, a set of concepts
is represented as a library of related functions or classes.In such
general-purpose and near-general-purpose languages the ideal of
the perfect language for the task takes the form of libraries.

What do we expect from a well-designed special-purpose language?
Concise notation is the beginning. Consider a simple, common, and
useful example:

A = k*B + C

First note the algebraic notation using operators. Notation is im-
portant for concise expression of key ideas in a community. This
particular notation is based on almost 400 years of history in the
mathematics/scientific community.

Essentially all languages can handleA=k*B+C when the variables
denote scalar values, such as integers and floating point numbers.
For vectors and matrices, things get more difficult for a general-
purpose language (that doesn’t have built-in vector and matrix
types) because people who write that kind of code expect perfor-
mance that can be achieved only if we do not introduce tempo-
rary variables fork*B andk*B+C . We probably also need loop fu-
sion (that is, doing the element *, +, and = operations in a mini-
mal number of loops). When the matrices and vectors are sparse
or we want to take advantage of known properties of the vectors
(e.g.,B is upper-triangular), the library code needed to make such
code work pushes modern general purpose language to their limit
[17, 23] or beyond — most mainstream languages can’t efficiently
handle that last example. Move further and require the computa-
tion of A=k*B+C for large vectors and matrices to be computed in
parallel on hundreds of processors. Now, even an advanced library
requires the support of a non-trivial run-time support system [1].
We can go further still and take advantage of semantic properties of
operations, such as “remembering” that C was the result of anoper-
ation that leaves all its elements identical. Then, we can use much
simpler add operation that doesn’t involve reading all the elements
of C. For other examples, preceding the numerical calculation with
a symbolic evaluation phase, say doing a symbolic differentiation,
can lead to immense improvements in accuracy and performance.
Here, we leave the domain where libraries have been considered
useful. Reasoning like that and examples like that (and manymore
realistic ones) have led to the creation of a host of special-purpose
languages for various forms of scientific calculation [24].

So, the ideal notation offered by a general purpose languageis just
the beginning. It can be the basis for comprehension, for fast com-
pilation, for performance (exploiting type information and semantic
properties), for reasoning about programs (by the implementation
or associated tools), for programmer productivity, for making facil-
ities accessible to professionals who need to program in their field
of expertise, yet don’t want to become professional programmers
(e.g., physicists, engineers, animators, and graphical designers). Fi-
nally, the clarity of the code can greatly ease maintenance.

Note that the ideals and strengths of special-purpose and general-
purpose languages can conflict. By definition, a general-purpose

language aims at allowing the programmer to express just about
anything. On the other hand, a special-purpose language gains
much of its strength from allowing a programmer to express only
what makes sense in its specific domain. When it comes to program
analysis and optimization, this is a great strength of a special- pur-
pose language. For example, if an optimizer tries to do a symbolic
differentiation of a program in a language focused exclusively on
scientific computation, it does not have to worry about a program-
mer trying to differentiate the draw function of a graphics system.

Convenient graphical interfaces are often associated withspecial-
purpose languages. They can be used as an extreme example of
direct representation of ideas or as a special- purpose language.
However, such interfaces can be used to equal effect for codein
a general-purpose language, so GUIs will not be examined further
here.

3 Problems

It is fun to design a new programming language. Doing the initial
implementation and trying the new language with clever examples
can be most exhilarating. However, it is plain hard work to bring
the implementation up to the level needed for users who care noth-
ing about language design subtleties. Building supportingtools,
such as debuggers and profilers, is hard work and not intellectually
stimulating for most people who design programming languages.
Real users also need basic numeric libraries, basic graphical facil-
ities, libraries for interfacing with code written in otherlanguages,
“hand holding” tutorials, detailed manuals, etc. Doing each of those
things once can be interesting and most educational, doing them all
or repeatedly is tedious and often expensive. Porting the implemen-
tation, tool base, and key applications to new machines, platforms,
and compilers repeatedly is not only tedious, but also career death
for many people. Basically, designing, implementing, maintaining
and supporting a language is tremendously expensive. Only alarge
user community can shoulder the long-term parts of that.

The net effect is that on the order of 200 new languages are devel-
oped each year and that about 200 languages become unsupported
each year. “Language death” doesn’t just happen to bad languages.
For example, you can find a collection of 16 languages for high-
performance computing inParallel programming using C++[24].
Most have very appealing aspects, many are based on brilliant in-
sights, all were supported by an enthusiastic research group, and all
had years of stable funding. None are in major use today. Noneare
supported by an organization outside the one that developedthem.
All but one are dead.1 Interestingly, the one survivor (Charm++) is
more of a library than a language.

In addition to the really ambitious language design projects, thou-
sands of researchers work on dialects and associated tools for their
research. Such dialects are not built from scratch; instead, a com-
piler and key support tools are modified to serve the new dialect.
Essentially all become unsupported upon graduation, funding expi-
ration, tenure, promotion, transfer of maintenance responsibilities,
change of fashion, change of any part of the tool chain, change of
management, consolidation of IT operations, etc.

Some of these languages are designed for research only (or claim
to be), but many are aimed at non-research use (or claim to be)and

1I’d love to be proven wrong on this, so if you have a counter
example, please tell me and we’ll celebrate this exceptional success
together.

45

most language designers harbor dreams of wide use for their lan-
guages. However, most of these new languages and dialects never
see non-research use. The ones that do, are generally unloved by
maintenance organizations. That is not just prejudice and unwill-
ingness to learn or to change. There are perfectly good reasons for
the lack of enthusiasm in maintenance organizations. For exam-
ple, the supply of reasonably priced support personnel tends to be
severely limited. Good designers and good researchers (typically
with PhDs) rarely want to become maintainers with a typical main-
tainer’s salary, work conditions, and career prospects.

Each new language and dialect has its own tool chain that needs to
be kept current and in sync with other tools. The cost of doingso
for a minor dialect is typically higher than for a major language —
because the cost of the latter is amortized over millions of users.
These reasons are often solid in economic and management terms,
even though they can be heartbreaking for the proponents of anew
language or dialect. For example, the largest application using ML
within AT&T was rewritten in a non-research language and so were
the few uses of a very interesting rule-based language R++ that can
be seen as an early precursor of aspect-oriented programming [11].

Tool chain problems don’t just happen to “Mom&Pop languages.”
I have seen major organizations abandon Ada for just this reason.
Similarly, education can be a major problem. If a language isn’t
taught in universities (or only in a few schools), good programmers
become scarce and most organizations cannot afford to re-train new
hires. Furthermore, new programmers are sometimes overly im-
pressed by their favorite language and resist training. I have seen
organizations abandon Fortran for that reason. The two effects are
mutually reinforcing.

However, most special-purpose languages, proprietary dialects,
etc., never get a large enough user base and tool set to worry about
decline. Most minor and research languages simply never gain the
tool support and availability on a wide range of platforms that users
of mainstream languages take for granted. Unless a new language
is really a minor dialect of an existing language, almost allof the
design and implementation effort is recreating facilities— such
as debuggers, profilers, database interfaces, and GUI interfaces —
that tend to lie outside the main interest of the language design-
ers. This repetitive reconstruction of “standard facilities” provided
for other languages breeds lots of “good little ideas” as people add
improvements. Unfortunately, such “little improvements”tend to
further isolate users. Since “further isolates” can be readas “locks-
in users” as well as “provides better support than the competition,”
there is often little resistance to gratuitous replicationand incompat-
ibility. Compatibility is just hard work, and typically unrewarding.

How many users does it take to sustain an infrastructure? Of course,
that depends on a lot of things, but generally it requires more peo-
ple than work on a single application. In fact, it typically takes at
least a small company. That is more — often significantly more—
people than it took to create the initial design and implementation
of a language. If — as is usual — these people have to be paid from
the revenues from sales and teaching, a special-purpose language
now comes under pressure to become more widely useful. That
is, the special-purpose language starts to offer facilities for general
computation, general data structures, access to “externalsystems,”
database facilities, graphics facilities, etc. The resultcan be sum-
marized as “Every special-purpose programming language wants
to grow up and become a general-purpose programming language.”
Typically, this is a precursor to “language death” (becauseof in-
stability, lack of design focus, and added cost) or to a retreat into
a commercially viable niche that covers only a small part of the

special-purpose language’s natural application domain. This with-
drawal is often accompanied with a lot of commercial hype anda
tendency to hide and obscure genuine technical information.

Many (probably most) special-purpose languages suffer from “edge
effect” problems. The “edge effect” (also more evocativelyknown
as the “falling off the cliff” effect) comes when a programmer needs
to do something that isn’t supported by the special-purposelan-
guage. For example, a programmer using a language for specify-
ing interactive graphics might want to say “when viewed froma
sufficient distance, groups of objects may be considered oneob-
ject.” The graphics system could have provided such a feature, but
in this case it didn’t (and the difference in real-time response was
about a factor of 100). What does the programmer do? By defi-
nition, every special-purpose language has such “edges.” For stu-
dents and novices, the effect can be a nuisance; for professionals
working on large projects (such as the airline control application
from which this graphics example was chosen), the result canbe
the abandonment of the special-purpose language in favor ofan al-
ternative, such as a graphics library written in a general-purpose
language. But what does a programmer do if changing tools isn’t
an option? In a “pure” special-purpose language, a new primitive
operation or object must be added. That’s not something every ap-
plication programmer can do because it may effect the basic model
of the special-purpose language. I have seen the time for adding a
simple feature vary from one day (ask a local expert and wait for
the overnight tool build) to half a year (wait for the next release) or
more. This kind of delay can kill a project, so it must be considered
among the risks when choosing or designing tools. For a library —
and for any tool that allows a programmer to add code written in a
general-purpose language — the problem is minor.

The final nail in the coffin of many special-purpose languagesis that
once it is designed and in use, it is relatively easy to “emulate” its fa-
cilities in a general-purpose language. Often, the value ofa special-
purpose language is not really in the language implementation or its
particular syntax (though programmers can be passionatelydevoted
to a syntax). The value is in the design, the programming model,
the techniques for use, and possibly some special algorithms or data
structures sustaining applications. Typically, those special-purpose
language “implementation details” can be separated from the lan-
guage and used directly from a general-purpose language. This is
all the easier because these key components are written in some
general-purpose language. All that is needed for their direct use
is a nice programming interface in that general-purpose language.
The definition of “nice” will reflects the experience gained from the
use of the special purpose language.

Please note that a language is rarely “killed” by any one of the prob-
lems mentioned. Typically, the language succumb to a combination
of problems. Also, this list is not intended to be complete orneces-
sary “fatal”: some special-purpose languages do survive and some
fail because of reasons not listed here. An exhaustive list of prob-
lems probably couldn’t be compiled, and if it could it would be
beyond the scope of this paper.

3.1 Case study: R++

A detailed study of a few hundred new languages to provide solid
evidence for the observations made here would be useful. How-
ever, I doubt it would dampen the enthusiasm for designing new
languages. Here, I’ll just present one small example, and then pro-
ceed to an alternative approach to providing new facilitiesfor pro-
grammers.

46

R++[11] is an unrecognized precursor to aspect-oriented program-
ming. Basically, it is an extension of C++ in which you can define
actions and triggers for actions. For example, a retirementpolicy
can be associated with anEmployee class like this:

rule Employee::retirement policy {
age>=65 && status!=retired

=>
cout << name << " must retire...";

}

This is simple enough to be easy to teach. Furthermore, the imple-
mentation was a small enough increment on C++ that it was rel-
atively easy to maintain. Since R++ is a superset of the general-
purpose language C++ there are no edge effects. It was used ina
reasonably large telecom operations system application. Tutorials,
academic papers, manuals, experience reports, implementation, etc.
were provided. You can find them on the web [11].

For all practical purposes, it died in 1996. The reasons werebasi-
cally that the porting and training costs were too high compared to
the benefits. What do I mean by dead? Completely unused? Not
necessarily. Ever so often, I see a reference to R++ and I’d besur-
prised if there wasn’t a project somewhere using it. Probably, there
are also a couple of research groups trying it out. However, de-
spite ideas that appear fundamentally sound, despite avoiding edge
effects by being embedded in a general-purpose language, and de-
spite having an implementation that did sustain a major application,
R++ still suffered many of the various problems mentioned inthis
section and failed to gain major use outside its originatingorgani-
zation.

4 Alternatives

So, in most cases, designing a new language is not an economically
viable solution to the problem of how to provide special-purpose
facilities. A language often looks good for a few years but main-
tenance, porting, education, etc. is too expensive and the result is
death or at best stagnation of the tool chain and the user commu-
nity. As a technical/economical choice, designing a new language
most often is a mistake. Most language design efforts soak upre-
sources reinventing a few wheels and then die having provided a
poor return on investment. The resources could have been better
spent on improvements to an existing major language and its li-
braries and tools. Furthermore, most new languages divide acom-
munity by creating barriers to communication of new ideas and not
infrequently by generating hype that trigger language warsand dis-
trust of new ideas. Not all of the problems are the fault of thenew
language, and new ideas must be explored and exploited. So, what
else can we do to bring the ideal of direct expression of ideasin
code into wider use?

So, let’s assume that we are in one of the many situations where
designing a new language is likely to be uneconomical and to have
undesirable effects on the spread of ideas. What alternatives do we
have when our task is to provide programmers with improved tools
for expression ideas in code?

Here are some popular approaches:

1. Compiler options and pragmas

2. Libraries

3. Preprocessed languages

4. Dialects

Each can be an effective approach in some cases and each has been
used in ways that have been deemed successful. Here, we must
consider their fundamental and practical strengths and weaknesses.

These are not the only possible approaches. For example, onemight
consider:

1. Dynamically typed languages

2. A new, more general, general-purpose language

Dynamically typed languages are not considered here. The the main
reason is an interest in compile-time guarantees. Basically, dynam-
ically -typed languages constitutes a different world fromthe stat-
ically typed world that I focus on here. Dealing with that world is
beyond the scope of this paper.

One might consider building a new general purpose language pro-
viding facilities that are so complete that every special-purpose lan-
guage can be expressed directly through the mechanism of thegen-
eral purpose language. That’s one of the holy grails of general-
purpose language design. In fact, over the last 30 years or so, there
has been a stream of such languages offering facilities for defining
extended syntax (e.g., through embedded parsers) and associating
semantics with the newly defined constructs. Such languagesare
also beyond the scope of this paper. Part of the reason is thatpro-
viding such a language is beyond the means of most organizations
needing a special-purpose language. Another problem is that (ironi-
cally) such languages themselves suffer from the problems of being
special-purpose languages with small user communities andinsuf-
ficient support. The success rate for general-purpose languages is
even lower than the rate for special-purpose languages.

4.1 Compiler options and pragmas

People who add compiler options and/or pragmas rarely thinkthat
as language design. In particular, (in the C and C++ worlds)
a #pragma can be ignored by a compiler. However, every new
#pragma and compiler option introduces a new dialect. It is some-
thing to consider when building a system, when specifying a system
configuration, when porting a system, when documenting a system,
and when trying to understand application code. Assume for amo-
ment that options and#pragma s are not used for back-door lan-
guage extension. Then, they are simply insufficient for doing any-
thing really interesting in the direction of better expression of ideas.
Most special-purpose languages require additions. Also, they often
require restriction of use of certain undesirable languagefeatures.
That makes compiler options a too crude a mechanism. Options
tend to apply indiscriminately; for example, we might want to elim-
inate the use ofgoto . However, the option will then eliminate all
goto s — even the acceptable ones for breaking out of loops in a
highly optimized matrix implementation and the essential ones in
implementation of the state machines generated from a high-level
modeling library/language. What is needed is to distinguish be-
tween uses of an undesirable language feature in user code and their
use in the implementation of trusted components. Compiler options
are best left for conventional uses, such as backwards compatibility
switches;#pragma s are best avoided.

4.2 Libraries

Libraries can provide expressive power and notational convenience
that approximate that of built-in language features. However, it is

47

hard to ensure consistent use of a library (or a set of libraries). It is
even harder to ensure consistent use of a subset of a library when
— as is common — too much has been bundled into a single unit
of distribution. Other language features can interfere with what a
library attempts to achieve. The C++ standard library is a classi-
cal example. It provides well-behaved containers, but somepro-
grammers use arrays instead and thereby prevent any meaningful
guarantees to be made for the program as a whole.

When ambitious in what they try to achieve in terms of generality or
performance, libraries can become very elaborate and brittle. For
example, some C++ template meta-programming libraries aiming
at very general support for high-performance numerical computa-
tion reach their goal at the cost of complete obscurity of imple-
mentation details that becomes visible to users during debugging.
Often, a library breaks the zero-overhead principle in search for
generality.

A library cannot, by itself, eliminate basic problems with host lan-
guage semantics. For example, in C and C++, aliasing problems
persists so that a library cannot provide guarantees neededfor con-
fidence, transformations, and optimizations. Often, a library is (at
least partially) defined in terms of its implementation; it is not spec-
ified as an entity separate from its host language implementation.
This is not a fundamental problem, but it is a common problem,and
often a serious one in comparison to a special-purpose language.

4.3 Preprocessed languages

Generating code from a higher-level language into a lower-level one
has been popular for decades. For example early C compilers gen-
erated assembly code; early C++ compilers generated C code;GUI
builders, CAD systems, IDL processors, modeling languages, etc.,
generate code in languages such as C, C++, Java, C#. That is, the
language source is preprocessed into a host language. The resulting
languages and language processors are referred to by many names,
such as preprocessors, macros, generators, wizards, builders, and
meta-languages. One way of distinguishing an implementation of
a language implemented by such techniques from a facility defined
by such translation techniques is whether you can ever get anerror
message from the target language compiler. If you can it’s a pre-
processor; if not it’s a compiler. For example, by that criteria, the
original C and C++ translators (into assembler and C) were com-
pilers whereas Ratfor, C macros, and Microsoft “wizards” rely on
preprocessors. C++ templates are “right on the edge” in thatthey
receive some compiler support (and will receive significantly more
in the future: concepts [21, 20]). However, compiler error mes-
sages sometimes fail to refer to the original template source and
often do so spectacularly badly. In consequence, some program-
mers consider templates “like macros” and avoid them; many more
avoid uses they consider nontrivial. Here, we consider preprocessed
languages, rather than abstraction facilities integratedwithin a lan-
guage.

The language (generator, macro-language, modeling language,
whatever) defined by a preprocessor becomes yet another special-
purpose language. It requires documentation, training, tool sup-
port. In particular, you need to use a preprocessor togetherwith a
matching tool chain and compiler. Unless the preprocessor is inte-
grated into the tool chain and shipped with every implementation,
this implies lock-in and slow upgrades. It is not uncommon for the
preprocessor not to work with the most current version of thecom-
pilers and tools or the underlying language. The main reasonis that
the preprocessor implementer doesn’t get access to those compilers

significantly before their own users. This commonly leads tousers
having to make a painful choice between using the preprocessor or
the latest and greatest compiler and other tools. This creates fric-
tion between the preprocessor users and any non-preprocessor users
they collaborate with. The debugging, compatibility, and portabil-
ity problems persist because old compilers don’t just die. It can take
a large organization the better part of a decade to get everyone up-
graded to the latest version (of something), just to fall behind again
at the next release. For example, it took “forever” (almost adecade)
to get C++ template implementations good enough for mainstream
use. However, some users still rely on decade old compilers.

A preprocessed language tends to have problems interactingwith
the type system of the host language. Having the same type system
as the host language is often not good enough — after all, the pur-
pose of a preprocessed language is to elegantly express things that
cannot be expressed elegantly in the host language. Error detection
and error reporting problems are just the most obvious examples of
this. Concepts (a type system for types) [21, 18], as being devel-
oped to improve C++ templates’ support for generic programming
and template metaprogramming, is an example of a mechanism ad-
dressing the problem of mismatch of the type systems of a higher-
level language and a lower-level host language. Higher order types
fills some of the same role in the specification of abstractions in
functional languages.

So, a preprocessed language share many problems of with a special-
purpose language with a stand-alone implementation. In fact, as
their tools become more complete and their definition more precise
and separate from the host language, they grow into special-purpose
languages. Conversely, if their implementation and type system
support becomes more integrated with the host language, they cease
to be separate languages and become abstraction mechanismsof the
host language (C++ templates is a prominent example). In addition,
preprocessing languages tend to suffer the problems of libraries:
Unless all code conforms to the conventions of the preprocessed
language, the guarantees the language can rely on and offer weaken.

4.4 Dialects

Take a popular general-purpose language, add desired features to a
compiler and/or a run-time support system, and you have yourown
private dialect. This may be the most popular way of creatinga new
language. The result is not quite a special-purpose language, but it
has special-purpose features embedded in a general-purpose lan-
guage. Working in a production-quality general-purpose language
implementation is hard, though. Many people will simultaneously
be making modifications in such an implementation. Furthermore,
compilers, debuggers, libraries, tools are required partsof such im-
plementations and major implementations target many platforms.
Consequently, most people who extend a language in this way do
so in a minor — less messy — implementation, modifying only the
part of the tool chain they need, and target only the platforms they
care about. This is reasonable — in many cases even essential—
to allow people to focus their efforts on the design and implementa-
tion of the new facilities they want. Unfortunately, the effect is that
unless the major vendors adopt the new dialect, its designers are left
with a private language. This implies all the usual private language
costs — and the usual mortality rate. In addition, it is essentially
impossible to remove undesirable features from a dialect. Doing so
would destroy compatibility and basically move the language away
from the dialect classification and into the special-purpose language
classification.

48

5 The SELL approach

The analysis in sections 3 and 4 paints a grim picture of the prob-
lems of applying language design and implementation techniques to
support software development. One conclusion would be to leave
the field to big corporations with deep pockets: Let them do the de-
sign, development, and apply their marketing muscle; then we live
with the results, whatever they may be. An alternative conclusion
is to withdraw into some cosy ghetto of our own design and let the
rest of the world do what it likes without interference or input from
us. I like neither alternative and point to a way to dodge the horns
of this dilemma:

1. superset: Add libraries to provide application-specificfacili-
ties, then

2. subset: Subtract features (outside the library implementation)
to provide semantic guarantees

The result is a subset of a superset of a language called aSemanti-
cally Enhanced Library Language. When subsetting we can aim at
a “clean and regular” language. Since a SELL will aim for a nar-
rower application domain than its host languages, we have a good
chance of the result being simpler than its host.

We must consider this approach in terms of expressiveness (“can we
really express things as well in a library as in a special-purpose lan-
guage?”) and tools (“will we get stuck developing and maintaining
a messy tool chain?”). The claim is that the answers can be “yes”
and “no” for a large enough range of problems and a low enough
cost to prefer the SELL approach over the traditional approaches
mentioned in sections 3 and 4. Obviously, the SELL approach is
not completely new — in fact, it is an attempt to synthesize what
has worked best in the traditional approaches and dodge the worst
problems. Please also note that I don’t claim that the other ap-
proaches to making special-purpose features available never work
or that there are no other alternatives. That would be absurd. What
I do claim is that the success rate for new languages — if measured
by survival of a language for a decade and use outside the group that
originated it — is very low and the costs higher than often realized.

The argument about expressiveness of libraries is based on apair of
old Bell Labs sayings:

1. Library design is language design

2. Language design is library design

We need both. In other words, the expressiveness of a libraryde-
pends on the ability of a general-purpose language to define li-
braries. Functional programming, object-oriented programming,
and generic programming are prominent schools of thought that
give a prominent role to library building.

The skills needed to write a good library are very similar to the
skills needed for all high-end systems programming or application
building. Furthermore, when we write a library, we can rely on
existing infrastructure (compilers, debuggers, libraries, education,
etc.). The result is that libraries are cheap to produce compared to
alternatives.

However, the tools part could easily lead us into the debugging,
tool chain, and maintenance problems characteristic of dialects and
preprocessors. To avoid that we need a tool for expressing con-
straints and high-level transformations that is minimallyinvasive
into the tool chain. To further keep the tool problems under control,
we need a general tool for doing that and one that will fit into all

tool chains. That is, we need a general-purpose tool for analyzing
source code and performing source-level transformations that relies
on a standard interface to compilers.

5.1 C++

In principle, any general-purpose programming language can be
the host language for the SELL approach. Unsurprisingly, myfa-
vorite/chosen host language is C++ [19, 8]

C++ has the virtues of stretching to a very broad range of applica-
tion areas, good performance, a large and lively user community,
and support for compilers, libraries, and tools for essentially all
platforms [22].

C++’s abstraction facilities provide adequate support forobject-
oriented programming, generic programming, traditional procedu-
ral programming, and multi-paradigm programming combining el-
ements of those. Classes plus templates plus overloading isthe
basis of expressiveness and performance.

Obviously improvements are possible — even given the Draconian
compatibility constraints imposed by the huge user community and
the wide range of application areas. In particular, we hope that the
next standard (C++0x) will offer concepts (a type system fortypes),
more general and flexible facilities for initialization, and remedies
for many minor annoyances [20]. Unfortunately, the compatibility
constraints and the use of C++ for very low-level system compo-
nents precludes remedying obvious weaknesses, such as overly ag-
gressive implicit conversions (inclunding the array-to-pointer con-
version) and unchecked unions.

5.2 A brief overview of the Pivot

The Pivot is a general framework for the analysis and transforma-
tion of C++ programs[13]. The Pivot is designed to handle thecom-
plete ISO C++, especially more advanced uses of templates and in-
cluding some proposed C++0x features. It is compiler independent.

There are lots of (more than 20) tools for static analysis andtrans-
formation of C++ programs, e.g., [15, 2, 16, 12]. However, few —
if any — handle all of ISO Standard C++ [8, 19], most are spe-
cialized to particular forms of analysis or transformation, and few
will work well in combination with other tools. The design ofthe
Pivot is focused on advanced uses of templates as used in generic
programming, template meta-programming, and experimental use
of libraries as the basis of language extension. Since (static) types
is central to such libraries, the SELL approach requires a represen-
tation that deals with types as first-class citizens and allows analysis
and transformation based on their properties. In the C++ commu-
nity, this is discussed under the heading ofconceptsand is likely
to receive some language support in the next ISO C++ standard
(C++0x) [21, 18, 20].

The central part of the Pivot is a fully typed abstract syntaxtree
called IPR (Internal Program Representation):

To get IPR from a program, we need a compiler — only a compiler
“knows” enough about a C++ program to represent it completely
with syntactic and type information in a useful form. In particular,
a simple parser doesn’t understand types well enough to do a cred-
ible general job. We interface to a compiler in some appropriate (to
a specific compiler) and minimally invasive fashion. A compiler-
specific IPR generator produces IPR on a per-translation-unit basis.

49

C++ source Compiler

IPR generator

Object code

XPR

IPR

IPR Applications

IDL

XML

Information

Figure 1. An overview of The Pivot infrastructure

Applications interface to “code” through the IPR interface. So as
not to run the compiler all the time and to be able to store and merge
translation units without compiler intervention, we can produce a
persistent form of IPR called XPR (eXternal Program Representa-
tion).

The IPR is complete and arguably minimal. Traversal of C++ code
represented as IPR can be done in several ways, including “ordinary
graph traversal code,” visitors [6], iterators [19], or tools such as
Rose [15]. The needs of the application — rather than the IPR —
determines what traversal method is most suitable.

Currently, the Pivot does not support an annotation language. Pivot
programs can annotate IPR nodes, but there is no facility forthe
programmer to embed annotations in the C++ source text. Provid-
ing such a facility is easy, but once programmers starts to depend
on such annotations, they have created a new special-purpose lan-
guage. We want to explore how much can be done with the SELL
approach, relying only on standard conforming C++ source text.

6 Examples of SELLs

The proof of the pudding is in the eating, but this is not a paper pre-
senting you with a SELL for use; it is a presentation of the general
idea of SELLs. Therefore, I present only details that will illustrate
the idea of a SELL, not complete SELLs.

6.1 Safe C++

C++ inherits a host of opportunities for type violations from C and
adds a few of its own. It is possible — and not very hard — to write
type-safe code in C++. However, it is not easy to know that no type
violations exist in a program, especially in a large programwrit-
ten and maintained by many programmers with a variety of back-
grounds and a variety of ideas of what constitutes safe code.So,
how would we support a type-safe dialect of C++ that maintains
the essential expressiveness and efficiency of C++? In particular,
we want to be sure that there are no type violations in the code. We
can only be really sure if we can provide a tool (or combination of
tools) that will detect all violations. In the absence of tools, we must
rely on humans to follow rules. That would probably be betterthan
the state of the art in most software development organizations, but
it would only be second best.

Consider the major insecurities in C++ code:

1. Buffer overruns — i.e., reading or writing outsider the range
of an array

2. Dereferencing an uninitialized pointer, a zero-valued pointer,
or a pointer to a deleted object

3. Misuse of a union — i.e., write a union variable as one type
and read it as another

4. Misuse of a cast — e.g., cast an int to a pointer type where no
object of that type exist where the new pointer points

5. Misuse ofvoid* — e.g., assign anint* to avoid* and cast
thatvoid* to adouble*

6. Deleting an object twice, not deleting an object after use, or
using a pointer after deletion.

The obvious approach for avoiding these problems is to provide a
library (or a set of libraries) that saves the programmer from having
to use these error-prone features. For example, instead of using ar-
rays, the programmer can use a range-checkedvector and instead
of a union a user can use a taggedunion or anAny type. Casts
(with exception of the dynamically type-safedynamic cast) and
void* s are rarely useful outside low-level and easily encapsulated
uses, so they can simply be avoided. If we use counted pointers,
memory leaks won’t happen (depending on how cyclic data struc-
tures are handled). Since pointers are checked, we don’t access
through invalid pointers and double deletions are easily detected.

Basically, errors that cannot be detected until run-time are systemat-
ically turned into exceptions, makingSafe C++a dynamically type
safe language. Exceptions may not be your favorite languagefea-
ture, but they are useful in most contexts and are universally used
for reporting run-time type violations in languages deemedtype-
safe.

So, we can fairly easily write code that doesn’t suffer from the
obvious type-safety problems. What is outlined here is a SELL
where the superset is created by adding checkedvector s, “smart”
checked pointers, a taggedunion (or anAny type). However, noth-
ing has been gained if users persist using the unsafe-features in un-
safe ways. For example, we can write safe code, but someone might
just do something like this:

double* horrible(int i)
{

int v[80];
char* p = new char[200];
double* q = new double[200];
Shape* pc = new Circle(Point(10,20),20);
delete[] p;
p[100] = ’c’;
p[i] = ’x’;
v[100] = 666;
pc->rotate(45);
pc->draw();
f(pc);
void* vp = v;
delete vp;
delete[] p;
return q;

}

Obviously, the subsetting (enforcement) part of the SELL design
must be to detect and eliminate the unsafe uses of the host lan-

50

guage. Please note that the tool that does that must distinguish be-
tween the use of the “banned” features or uses of features within
the implementation of the extensions and direct use by the user. In
this case, a dumb tool (such as a compiler option) banning alluses
of pointer would prevent the use ofvector that uses pointers in-
ternally. Instead, we could use the Pivot to catch only the uses of
pointers outside our supporting classes. That done, our code would
have to be rewritten to look something like:

unique ptr<vector<double>> messy(int i)
{

vector <int> v(80);
string p(200);
vector<double> q(200);
scoped ptr<Shape> pc(new Circle(Point(10,20),20));
p[100] = ’c’; // ok
p[i] = ’x’; // checked at run time
v[100] = 666; // caught at run time
pc->rotate(45);
pc->draw();
f(pc);
return unique ptr<vector<double>>(q);

}

This is much better (ignoring the messy use of “magic constants”),
but Safe C++could have problems for real-world programming in
many areas where C++ is used: We have not dealt with performance
and compatibility. Actually, this code hints of a very significant
concern for performance in the library design:scoped ptr deletes
its object at the end of scope and preventsf from keeping a refer-
ence to that object. Similarly,unique ptr cooperates withvector
to ensure that the elements ofq are transferred out ofmessy and
not destroyed as part ofq upon exit. We didn’t just rely on counted
pointers of a garbage collector to deal with resource problems.

Using the Pivot, we could do better, though. By default, both
uses ofpc in messy must be checked for validity (assuming that
a scoped ptr can be a null pointer). However, a bit of simple flow
analysis can eliminate the second check, and a slightly moreclever
analysis will reveal that no checking is actually necessary: We can
see thatpc has been properly initialized and not assigned to — and
so can the Pivot. This kind of analysis has been used experimen-
tally for private languages and dialects [9]. Given the Pivot, we can
apply this for a library or for “raw C++.”

Compatibility is a harder problem. What iff is not known to be
safe? What if we can’t rewrite or recompile all the code of a sys-
tem? What if layout compatibility of some data structures isre-
quired? Safe C++ as presented here is just an illustration, not a
full-blown SELL.

6.2 Parallel C++

With the emergence of cheap multiprocessors, clusters, andmulti-
core chips, concurrency is increasingly important. Many languages
and dialects have been designed to address the concurrency needs
of high-performance scientific computing. Here I will buildon a
library, STAPL [1] [14], that offers parallel operations oncontainers
in the spirit of the STL. For example:

void f(pvector<double>& v)
{

prange<double> r = find all(v.range(),criteria);
sort(r);
cout << r; // ordinary serial output of elements

}

Imagine thatv has 500 million elements and that the program
runs on a serious supercomputer, such as Blue Gene\L[3] (where
STAPL is in fact used). Thefind all will execute in parallel on
as many processors as the STAPL run-time system deems reason-
able finding elements that meetcriteria . If find all finds lots
of elements, thensort will also use many processors.

Here we have a sophisticated library combined with an even more
advanced run-time support system. What can the Pivot do to help?
For starters, it can produce the information that the run-time sup-
port system needs to function well. Secondly, it can provideclas-
sical flow analysis and aliasing information. Finally, it can be pro-
grammed to recognize usage patterns to allow algorithm substitu-
tion (as in the initial matrix algebra example) and alert theprogram-
mer to likely problems or opportunities.

6.3 Real-time C++

The problems of real-time code for embedded systems combine
concerns for correctness, reliability, and performance incon-
strained circumstances. Some problems and solutions overlap with
those ofSafe C++but others are unique in that they require that
every operation is performed in a known constant time (or less).
Naturally, not all real-time and embedded systems are written un-
der this Draconian rule, but let’s see how we can address those that
are. Some C++ operations become unusable:

1. free store (generalnew anddelete)

2. exceptions (assuming inability to easily predict the cost of a
throw)

3. class hierarchy navigation (dynamic cast in the absence of a
constant time implementation [7])

First, we add a suitable support library:

1. a fixed sizeArray class (no conversion to pointer, knows its
own size)

2. some safe pointer classes

3. memory allocation classes that guarantee constant time allo-
cation (and deallocation if allowed) — pools, stacks, etc.

4. ...

Next, we use the Pivot to eliminate dangerous operations (aslisted
in 6.1) from user code.

In principle, this will do the job. However, we can do more. For
most programs of this sort, we can do whole-program analysis.
Such programs tend to be relatively small and not allow dynamic
linking. Thus, the Pivot could be used to allow exceptions for error
reporting: we can verify that every exception is caught and calculate
the upper bound for each throw. This is a special — and especially
hard — example of using a tool to verify that resource consumption
is within acceptable bounds.

In general, there is lots more that the Pivot can do in the context
of embedded systems. Some depends on a specific application,so
the boundary between SELL and application support blurs. For ex-
ample, it is not uncommon for an embedded program to be more
permissive about the facilities that can be used during a startup
phase. The SELL can define what “startup” means (e.g., called
from start up) and only apply the stringent rules outside that.

51

7 Conclusions

The first half of this paper outlines the problems facing program-
mers providing and using a special-purpose language definedin the
most common ways: as a separate language, as compiler options, as
libraries, using a preprocessor for a general-purpose language, and
as a dialect. The picture painted is bleak, leading to a suggested
alternative: Semantically Enhanced Library Languages(SELLs)
The SELL approach offers a practical and economical alternative to
the more common ways of implementing extensions, dialects,and
special-purpose languages. By using libraries, it limits the prob-
lems with compatibility and tool chains. By adding tool support, it
enhances the appeal of libraries.

8 Acknowledgments

Thanks to Gabriel Dos Reis and my students for reading draftsof
this paper and making many detailed suggestions. Also thanks to
the anonymous reviewers for making more major suggestions,some
of which will require several more papers.

9 References

[1] Ping An, Alin Jula, Silvius Rus, Steven Saunders, Tim Smith,
Gabriel Tanase, Nathan Thomas, Nancy Amato, Lawrence
Rauchwerger:STAPL: An Adaptive, Generic Parallel C++
Library In Wkshp. on Lang. and Comp. for Par. Comp.
(LCPC), pp. 193-208, Cumberland Falls, Kentucky, Aug
2001.

[2] Otto Skrove Bagge, Karl Trygve Kalleberg, Magne Haver-
aaen, Eelco Visser:Design of the CodeBoost Transformation
System for Domain-Specific Optimisation of C++ Programs.
http://www.codeboost.org/ .

[3] IBM: http://www.research.ibm.com/bluegene/ .

[4] William R. Mark, et al: Cg: A System for Programming
Graphics Hardware in a C-like Language. Proceedings of
SIGGRAPH 2003.

[5] M. Fernandez, et al:SilkRoute: A framework for publishing
relational data in XML. ACM Trans. Database Syst. 27(4):
438-493 (2002)

[6] Erich Gamma, et al:Design Patterns. Addison-Wesley, 1994.

[7] Michael Gibbs and Bjarne Stroustrup:Fast Dynamic Casting.
Software—Practice & Experience. Vol 35, Issue 686. 2005.

[8] International Organization for Standards,International Stan-
dard ISO/IEC 14882. Programming Languages — C++, 2nd
ed., 2003. Wiley 2003. ISBN 0-470-84674-7.

[9] Trevor Jim, et al:Cyclone: A Safe Dialect of C. USENIX An-
nual Technical Conference, pages 275–288, Monterey, CA,
June 2002.

[10] Lengauer, et al:Domain-specific program generation. Re-
vised papers from Dagstuhl seminar. March 2003. LNCS
3016.

[11] Diane J. Litman, Anil K. Mishra, and Peter F. Patel-
Schneider: Modeling Dynamic Collections of Interdepen-
dent Objects Using Path-Based Rules. Proc. 12th Annual
ACM Conference on Object-Oriented Programming Sys-
tems, Languages and Applications (OOPSLA-97). Octo-
ber 1997. http://www.research.att.com/sw/tools/r+
+/ andhttp://www.bell-labs.com/project/r++/ .

[12] George C. Necula, et al:CIL: Intermediate Language and
Tools for Analysis and Transformation. http://manju.cs.
berkeley.edu/cil/ .

[13] The pivot is a program analysis and transformation infrastruc-
ture being developed at Texas A&M University.

[14] Steven Saunders, Lawrence Rauchwerger:ARMI: An Adap-
tive, Platform Independent Communication LibraryIn Proc.
ACM SIGPLAN Symp. Prin. Prac. Par. Prog. (PPOPP), pp.
12, San Diego, CA, Jun 2003.http://parasol.tamu.edu/
groups/rwergergroup/research/stapl/ .

[15] Markus Schordan and and Daniel Quinlan.A Source-to-
Source Architecture for User-Defined Optimizations. In Proc.
of the Joint Modular Languages Conference (JMLC’03), Vol-
ume 2789 of Lecture Notes in Computer Science, pp. 214-
223, Springer Verlag, June 2003. (Rose).

[16] S. Schupp, D. P. Gregor, D. R. Musser, and S.-M. Liu.Seman-
tic and behavioral library transformations. Information and
Software Technology, 44(13):797 810, October 2002. (Sim-
plicissimus).

[17] Jeremy G. Siek Andrew Lumsdaine:The Matrix Template
Library: A Generic Programming Approach to High Perfor-
mance Numerical Linear Algebra. ISCOPE’98, vol. 1505 of
Lecture Notes in Computer Science, 1998.

[18] Jeremy Siek, Douglas Gregor, Ronald Garcia, Jeremiah
Willcock, Jaakko Järvi, and Andrew Lumsdaine.Concept
for C++0x. Technical Report N1758=05-0018, ISO/IEC
SC22/JTC1/WG21, January 2005.

[19] B. Stroustrup,The C++ Programming Language, special ed.,
Addison-Wesley, 2000. ISBN 0-201-70073-5 .

[20] B. Stroustrup:The design of C++0x. The C/C++ Users Jour-
nal. May 2005.

[21] B. Stroustrup, G. Dos Reis:A concept design. Technical
Report N1782=05-0042, ISO/IEC SC22/JTC1/WG21, April
2005.

[22] B. Stroustrup: Examples of C++ applications: http://
www.research.att.com/˜bs/applications.html . Some
C++ compilers: http://www.research.att.com/˜bs/
compilers.html .

[23] Todd Veldhuizen:Arrays in Blitz++ ISCOPE’98, vol. 1505
of Lecture Notes in Computer Science, 1998.

[24] Wilson and Lu (editors):Parallel programming using C++.
Addison-Wesley. 1996. ISBN 0-262-73118-5.

52

DMTL: A Generic Data Mining Template Library ∗

Mohammad Al Hasan, Vineet Chaoji, Saeed Salem,
Nagender Parimi, Mohammed J. Zaki

Computer Science Department
Rensselaer Polytechnic Institute

Troy, NY 12180, USA

{alhasan,chaojv,salems,parimi,zaki}@cs.rpi.edu

Abstract

FPM (Frequent Pattern Mining) is a data mining paradigm to ex-
tract informative patterns from massive datasets. Researchers have
developed numerous novel algorithms to extract these patterns. Un-
fortunately, the focus primarily has been on a small set of popular
patterns (itemsets, sequences, trees and graphs) and no framework
for integrating the FPM process has been attempted. In this pa-
per we introduce DMTL, a generic pattern mining library which
fuses theoretical concepts from formal concept analysis and generic
programming. It provides a framework that allows mining a large
spectrum of patterns. We express each pattern in terms of itsre-
lational properties. Describing patterns based on their properties
results in a pattern concept hierarchy. This hierarchical model is
implemented using principles from generic programming. Inthis
paper, we describe our design considerations and the subsequent
implementation. Some of the challenges faced in terms of language
features have also been highlighted. Apart from using the library
in its entirety, we believe that some of its components, suchas iso-
morphism checking, can be used independently. These components
can definitely enrich the existing functionality provided in some of
the popular libraries such as the Boost Graph Library.

1 Introduction

Frequent pattern mining (FPM) is a data mining paradigm to ex-
tract informative patterns in massive datasets. Its applications are
growing enormously, aided by the availability of high computation
power, cheap massive storage, and improved technology for extrac-
tion and distribution of data. Researchers have successfully applied
FPM to a diverse set of problems in the areas of market basket anal-
ysis [1], bioinformatics [27, 26], web mining, fraud detection [4],
scientific and medical data mining, etc. In many of these applica-
tion domains, FPM is not the core component. Hence, availabil-
ity of the FPM library would allow researchers to save significant
effort and would enable them to focus on their core competence.
FPM research discoverspatternsthat conceptually represent rela-
tions among discrete objects. Depending on the complexity of these
relations, different types of patterns originate. The mostcommon
type of patterns are sets, where the relation is the co-occurrence of
objects. A well known example of the set pattern is a supermarket
transaction dataset; the set of items that are bought together by a
customer is of interest to the business strategists. Next, there are
sequence patterns, where co-occurrence of objects is augmented by
the presence of an order between them. Examples include time-

∗This work was supported in part by NSF CAREER Award IIS-
0092978, DOE Career Award DE-FG02-02ER25538, NSF grant
EIA-0103708, and NSF grant EMT-0432098.

series data in financial markets, genome sequence data in bioinfor-
matics, etc. Data mining researchers also work with tree andgraph
patterns. In tree patterns the object relationship evolvesin a hier-
archical manner, and in graph patterns the relationship is mostly
arbitrary. Mining web log data, XML or semi-structured dataare
examples of tree mining, and mining chemical compounds for drug
discovery is an example of graph mining.

1.1 Related Work

Although FPM is a very mature research area, development of an
FPM library has mostly been ignored. Since the commencementof
FPM research with the legendaryapriori itemset mining paper [1]
over a decade ago, several hundreds different scholarly articles have
been published. Some proposed algorithmic improvements, some
covered different variations of FPM problems, such as maximal
frequent [2] or closed frequent pattern mining [13] and somede-
veloped algorithms for mining new patterns, like DAG (Directed
Acyclic Graph), Free Tree [3], etc. Several others demonstrated the
potential of FPM algorithms by applying them to new fields, like
bioinformatics, operations research, intrusion detection, etc. No
real effort has concentrated on developing a library targeting differ-
ent FPM tasks. The closest works are MLC++ [10] and Weka [20].
The former is a collection of classification algorithms. Thelatter
is a general purpose Java library for different data mining algo-
rithms that includes only itemset mining. Besides these, there are
some independent application programs developed by researchers
in academia, mostly to evaluate the correctness and performance of
their proposed mining algorithms. But they are very specific, run on
a selected format of datasets and are in no way suitable as a library
component. They do not offer any standard interface for end users.
A collection of such algorithms specifically for itemset mining is
available from the FIMI [6] web site. Moreover, several practical
machine learning software, bioinformatics search tools, etc., em-
ploy FPM as the core mining engine, for which they usually write
their specific FPM programs. The unavailability of a genericFPM
library thus wastes enormous time and computation resources for
programmers and researchers.

We developed DMTL (Data Mining Template Library), a fre-
quent pattern mining library, that provides a unified interface to
mine a range of patterns. Currently the library has implementa-
tions for mining four key patterns—itemset, sequence, treeand
graph—but the framework provides the scope to mine new patterns
also. DMTL adopts a generic design, inspired by the state-of-the-
art generic libraries such as the C++ Standard Template Library
(STL) [16, 11] and Boost Graph Library (BGL) [15], and hence it
provides widespread usability without compromising on efficiency.
The library is generic with respect to the following aspects:

53

• Pattern to be mined.

• Input data source and format.

• Data structure to be used in the mining algorithm.

• Storage management.

• Mining algorithm/approach.

1.2 Contributions

The major contributions of our work towards the data mining com-
munity are as follows:

• DMTL offers algorithms for different pattern mining tasks in
a unified platform. To the best of our knowledge this is the
first effort of this kind in data mining.

• DMTL offers flexible interfaces to each of the algorithms, in-
cluding each of its sub-tasks so that it is very simple for end
users to use it as a library component in their software devel-
opment.

• DMTL is extensible; new patterns can be mined with very
minimal effort from the end user. Users just need to define
some template parameters to ensure that the library selects
the proper mining algorithm to mine that pattern successfully.
Some additional specialized code may be required for effi-
ciency reasons.

We also believe this work contributes to the library development
community in the following ways:

• DMTL adopts the generic software development approach us-
ing C++ templates. Due to the limitation imposed by the pro-
gramming language, it is still very difficult for programmers
to design generic software. Few books [11, 15] are available
that describe an implementation of a generic library. We be-
lieve that the design of DMTL could be an example for other
generic library developers to follow.

• Apart from its ultimate purpose of discovering frequent pat-
terns, our library provides several stand-alone utilitiesfor var-
ious patterns. This primarily includes the isomorphism check-
ing functionality for different patterns. We believe that these
features can complement the features provided in BGL.

• While implementing DMTL, we faced numerous challenges,
mostly related to programming language support for generic
software development. Most of these issues have already been
identified by several researchers [14, 17], but our work stands
as another practical example of those limitations.

• DMTL uses several template tricks, which we think could be
tremendously useful for any generic software developer.

2 Pattern Mining Preliminaries

The problem of mining frequent patterns can be stated as follows:
letN = {x1,x2, . . . ,xnv} be a set ofnv distinct nodes or vertices. A
pair of nodes(xi ,x j) is called an edge. LetL = {l1, l2, . . . , lnl }, be a
set ofnl distinct labels. LetLn :N → L , be a node labeling function
that maps a node to its labelLn(xi) = l i , and letLe :N ×N → L be
an edge labeling function, that maps an edge to its labelLe(xi ,x j) =
lk.

A pattern Pcan be represented as the pair(PV ,PE), with labeled
vertex setPV ⊆ N and labeled edge setPE = {(xi ,x j) | xi ,x j ∈ PV}.

The number of nodes in a patternP is called itssize. A pattern
of size k is called ak-pattern, and the class of frequent (as de-
fined below)k-patterns is referred to asFk. Given two patterns
P and Q, we say thatP is a sub-patternof Q (or Q is a super-
pattern of P), denotedP�Q, if and only if there exists a label-
preserving isomorphism fromP to Q; that is, iff there exists a
1-1 mapping f from nodes inP to nodes inQ, such that for all
xi ,x j ∈ PV : i) Ln(xi) = Ln(f (xi)), ii) Le(xi ,x j) = Le(f (xi), f (x j)),
and iii) (xi ,x j) ∈ PV iff (f (xi), f (x j)) ∈ QV . In some cases we
are interested inembeddedsub-patterns. In embedded patterns we
modify condition iii) above to allow an edge(xi ,x j) in P provided
f (xi) and f (x j) are connected inQ. In other words,P is an embed-
ded sub-pattern ofQ if P is a sub-pattern of the transitive closure of
Q. If P�Q we say thatP is contained inQ or Q containsP.

A databaseD is just a collection of patterns (objects, in database
terminology). LetO = {o1,o2, . . . ,ono} be a set ofno distinctobject
identifiers. An object has a unique identifier, given by the function
O(di) = o j , wheredi ∈ D ando j ∈ O . The number of objects in
D is denoted by|D |. The absolute supportof a patternP in a
databaseD is defined as the number of objects inD that containP,
given asπa(P,D) = |{P�d | d ∈ D }|. The(relative) supportof P

is given asπ(P,D) =
πa(P,D)

|D| . A pattern isfrequentif its support is
greater than a user-specified minimum support (min sup) threshold,
i.e., if π(P,D)≥ min sup. A frequent pattern ismaximalif it is not
a sub-pattern of any other frequent pattern. A frequent pattern is
closedif it has no super-pattern with the same support. The frequent
pattern mining problem is to enumerate all the patterns thatsatisfy
the user-specifiedmin sup frequency requirement (and any other
user-specified conditions).

The main observation in FPM is that the sub-pattern relation� de-
fines a partial order on the set of patterns. IfP�Q, we say that
P is more general thanQ, or Q is more specific thanP. The sec-
ond observation used is that ifQ is a frequent pattern, then gen-
erally all sub-patternsP�Q are also frequent.1 More important is
the converse, i.e., ifP is infrequent andP�Q thenQ shall also be
infrequent (follows from the anti-monotonicity of frequency). The
prefixof a pattern of sizek is a sub-pattern that consists of the first
k−1 nodes of the pattern. For efficiency reasons, many FPM algo-
rithms group (at least conceptually) patterns having the same prefix
into aprefix-based equivalence class. The various FPM algorithms
differ in the manner in which they search the pattern space.

3 Generic Aspects of DMTL

In this section we outline the generic aspects of the Data Mining
Template Library.

3.1 Generic Mining Algorithm

While implementing mining algorithms for different patterns, we
noticed that they exhibit considerable similarity, which suggests
developing a common framework for implementing them. Figure
1 outlines a generic pattern mining algorithm (pseudo-code) that
applies to all commonly explored patterns. In the algorithm(not
shown in the figure),k is initialized to zero andDB represents a
global database. Similarly, other related pattern mining algorithms
(closed or maximal pattern mining) also conform closely with this
outline. The algorithm is broken down into the major sub-tasks
which includescandidate generation, isomorphism checkingand

1Note that this property does not hold for induced patterns.

54

support counting (explained in detail in the implementation sec-
tion). By implementing generic functions for these sub-tasks, we
retain the abstraction shown in this pseudocode. The overall idea of
the algorithm is as follows: the mining process searches incremen-
tally in the pattern space by iteratively applying these sub-tasks in
each iteration to enumerate patterns of size 1, 2, and so on. Each
iteration discovers frequent patterns sized one greater than the pre-
vious till no further frequent patterns exist in the database. The

Enumerate-Frequent-Patterns([P],min sup):
1. ℘k+1 = candgen([P])
2. ∀ candidatesc∈℘k+1
3. if (checkisomorphism(c)) then
4. countsupport(c,DB)
5. if (c.sup≥ min sup) then
6. Fk+1 = Fk+1∪c
7. for every equivalence class[Pi] ∈ Fk+1
8. Enumerate-Frequent-Patterns([Pi],min sup)

Figure 1: Pattern Mining Algorithm

example in figure 2 demonstrates how the generic algorithm works
for itemset mining. The database on top left corner of the figure has
4 transactions. Each row contains a collection of items separated by
commas. We want to perform itemset mining on this dataset with
an absolute minimum support value of 3. The same database is also
shown in its vertical format (explained later in subsection3.1.2).
This representation is important in the vertical mining approach.
The algorithm first finds all the size-1 frequent itemsets, bymaking
a single database scan. The frequent items from the dataset with a
support value 3 or more are A, C, T and W, which are shown in the
oval to the right of the dataset. Each of these items is present in at
least 3 transactions. Now, the candidate generation step generates
six size-2 candidates by joining items from this set. The possible
candidates here are shown in the rectangle under the oval. Note that
the joining process in itemsets automatically eliminates duplicates.
For joining complex patterns (joining two graphs), this maynot be
the case, and we need to employ isomorphism checking to ensure
that each candidate pattern is generated exactly once. Finally, the
support counting step counts the support of each of the candidates
from the database. This step drops the itemset AT, as it appears in
only 2(< 3) transactions. The algorithm iterates until the size-k pat-
terns are found. All frequent itemsets produced by this algorithm
are shown in the figure. For other patterns, the algorithm follows
the exact same approach as detailed in this example.

The sub-tasks of a generic mining algorithm that we referredto in
the above two sections can be developed by using generic algo-
rithms expressed with C++ function templates. For example,the
candidate generationstep takes two parent patterns of typeT and
generates one or more candidate patterns of typeT. Here, the algo-
rithm strictly requires that both the input arguments, together with
the output argument, are of the same typeT (e.g., we cannot join a
set pattern with a tree pattern to produce a tree candidate pattern).
The isomorphism checkingalgorithm takes two input arguments
of same typeT (a pattern type) and produces a boolean value to
indicate whether the arguments are isomorphic patterns or not. The
support count algorithm takes one input argument of pattern type
T, counts its frequency in the entire database and returns an integer
value.

In all the above three generic algorithms, the typeT models a pat-
tern concept. It has the following requirements:

Figure 2: Itemset Mining Example

1. T defines an object that relates some elements.

2. T must adhere to a structure that is defined by a collection of
relational properties.

3. T defines a≤ operator.

4. Associated with typeT there exists a pattern-iterator, which
is used to iterate through the elements of the pattern.

All commonly known patterns in data mining, like set, sequence,
tree or graph are refinements of a pattern concept. The relational
properties of a pattern concept that we refer to aspattern properties
in DMTL are explained in the following subsection.

3.1.1 Pattern Properties

In section 2, we defined patterns in terms of graph abstraction.
The choice of graph, indeed comes naturally, since all the pat-
terns are, in a way, specializations of a graph pattern (a setis a
special case, which we considered as a graph without any edge).
Hence, a graph can represent all the patterns both conceptually
and implementation-wise. Using graph implementation for more
simpler patterns, like set, sequence or tree introduces inefficiency
in the mining algorithm, however, the concept ofpattern property
provides a novel solution to this dilemma. In the implementation
section, we explain the way we usepattern propertiesto ensure a
generic algorithm that does not compromise efficiency. Here, we
explain the different pattern properties that we used.

Relational properties that a pattern type T must conform to,are
indeed the graph properties. These properties imposes constraints
on graph to formulate patterns like, tree, sequence etc. We ana-
lyzed the pattern space and found that the following properties are
sufficient to describe the most common patterns, but nevertheless,
additional properties may be added seamlessly. The properties are
themselves categorized depending on the elements (nodes, edges,

55

etc.) of a graph on which the constraints are imposed.

1. Edge Relation The edge setEg is defined asEg ⊆ Vg ×Vg.
Under edge relation category we considered the following
properties.

• no-edgeElements in the patterns are not connected with
any edge.

• directed Elements in the patterns are connected with
directed edge. To put it in another way, we can say,
they are asymmetrically related.

• undirected Elements in the patterns are connected with
symmetric edges.

• cyclic A pattern is cyclic if at least one vertex is re-
flexive on edge relation in the transitive closure of the
pattern, otherwise the pattern possess the acyclic prop-
erty.

2. Vertex
• order Theorderedproperty imposes an ordering on the

neighbors of a vertex, or else the pattern is said to be un-
ordered. Ordering is usually relevant for the tree pattern
only.

3. Degree
• indegree lte one This property constrains all vertices

of a graph to have indegree≤ 1.

• outdegreelte oneThis property constrains all vertices
of a graph to have outdegree≤ 1.

4. Label
• unique label This property requires the labeling func-

tion to be one-to-one (injective). Each vertex thus maps
to a unique label (a common example of such a pattern
is an itemset).

3.1.2 Mining Properties

So far, we discussed that the generic mining algorithm that DMTL
advocates can mine any pattern belonging to a pattern concept. But,
in data mining research several variations of the core generic min-
ing algorithms exist, by varying the manner in which we perform its
sub-tasks. We represent those variations in terms ofmining prop-
erty; a user can choose a collection of such mining properties to
select the exact kind of algorithm that (s)he would like to choose
for the mining process. It is worth noting that, the mining prop-
erties are independent from the pattern properties. An analysis of
existing FPM tasks revealed the following mining properties that
we mention below. As with pattern properties, new mining proper-
ties can also be added effortlessly.

1. Join-type This category influences the candidate generation
phase, in which potentially frequent pattern are generated.
During candidate generation, the algorithm typically con-
structs a new pattern byjoining two parent patterns. The na-
ture of this join is a property itself. A suitably correct algo-
rithm has to be provided for the chosen property.

• Fk ×F1 A (k+1)-length pattern is constructed by join-
ing ak-length pattern with a unit length pattern.

• Fk ×Fk A (k+1)-length pattern is constructed by join-
ing two k-length patterns. This join is usually more ef-
ficient since it generates fewer infrequent candidates.

2. Support-countingThis category specifies how the support of
a candidate pattern is determined. Two common approaches

are:
• horizontal Indicates that the support for a candidate

pattern shall be determined by counting its occurrences
in the database, testing against each database object.
This method usually involves significant I/O overhead
for large databases.

• vertical In this approach, support for a pattern is de-
termined from what is called avertical representation
of a pattern [22]. This vertical representation for a pat-
tern is a list of transactions in which the pattern occurs
and is commonly referred to asVertical Attribute Table
(VAT). A vertical database lists all the patterns along
with their VATs. Figure 2 shows a vertical database in
the table titled “Vertical Database”. Support counting
using a vertical database is typically faster as it reduces
I/O cost.

3. Transitivity This category indicates if embedded occurrences
of a pattern should be considered in its support counting.

• induced Only induced pattern occurrences are
counted.2

• embeddedTransitive closures on the edge relationE
are included in the support as well. The transitivity
leads to discovery of embedded occurrences of the pat-
tern.

3.2 Generic Storage Manager

Database (back-end) support is an integral part of any pattern min-
ing task. Since pattern mining datasets are typically largein size,
back-end management becomes crucial to achieving an efficient im-
plementation. Sometimes a dataset does not even fit in main mem-
ory, so part of it needs to be saved on the disk for the algorithm to
continue. Since back-end access is tightly embedded in the mining
algorithm, it is very difficult for the user to modify the back-end to
obtain scalability or persistence.

DMTL’s implementation of back-end database support is generic,
through a generic storage manager class. Following the STL it-
erator concept, we decoupled the back-end database from theal-
gorithm using iterators. Any access to the database is done only
through the iterators. We also implemented three differentstorage
managers; all provide iterator classes. Discussion about each of
them is given in the implementation section.

3.3 Generic Input Data Source

DMTL is implemented with an objective to be widely applica-
ble. However, the format of the input dataset is different for dif-
ferent application domains. For instance, in supermarket transac-
tion databases, items are usually represented by numeric identifiers,
whereas in bioinformatics, items may use string representations for
protein or DNA sequences. DMTL takes care of these kinds of
dataset irregularities by implementing a generic tokenizer, which is
templatized with various arguments to adapt to a wide variety of
input datasets.

2Note that for graphs we actually mine connected sub-graphs,
and not only induced sub-graphs.

56

Figure 3: Pattern Property Concept Lattice

4 Pattern Property Concept

The generic design of DMTL mining algorithms for all patterns
based on thepattern propertyhas a foundation in Formal Concept
Analysis (FCA) [5]. We explain this next.

4.1 Formal Concept

DEFINITION 1. A formal context (K) := (G,M, I) consists of two
sets, G and M, and a relation I. The elements of G are called the
objects and the elements of M are called theattributes of the con-
text. In order to express that an object g is in the relation I with an
attribute m, we write gIm or(g,m) ∈ I and read it as “object ghas
attribute m.”

DEFINITION 2. For a set A⊆ G of objects we define

A′ := {m∈ M | gIm, ∀g∈ A}

(the set of attribute common to the objects in A). Correspondingly,
for a set B of attributes we define

B′ := {g∈ G | gIm, ∀m∈ B}

(the set of objects which have all the attributes in B.)

DEFINITION 3. A formal concept of the context(G,M, I) is a pair
(A,B) with A⊆ G,B⊆ M,A′ ⊆ B and B′ ⊆ A. We call A theextent
and B theintent of the concepts(A,B). B (G,M, I) denotes the set
of all concepts of the context(G,M, I).

In DMTL, we considerG as the set of all patterns that we want to
mine,M as the set of all pattern properties andI as the relation that
a pattern conforms to a property, then(G,M, I) is a context. Now,
if A⊆ G is maximal a collection of patterns, andB⊆ M is the set
of properties that are common to all the patterns inA, then(A,B) is
a formal concept of the context(G,M, I).
Example: If A = {DAG, Sequence, Ordered Tree, Unordered Tree}
is the set of patterns andB = {Directed,Acyclic} is the set of
properties common to members ofA, then(A,B) forms a formal

concept. The set A, i.e. the set of patterns, is the extent of the
concept and B, the set of properties, in the intent of the concept.

The concept in generic programming adheres with defini-
tion 3, if the objects equate with abstractions (types, in particular)
and the attributes with requirements. In [18], Willcock et al.
provide a precise definition for concepts, as they are used in
practical generic programming. That definition is an extended form
of the above definition, where the extensions clarify several issues
related to generic software design and programming languages.

4.2 Formal Concept Lattice

DEFINITION 4. If (A1,B1) and(A2,B2) are concepts of a context,
(A1,B1) is called asub-concept of (A2,B2), provided that A1 ⊆
A2 (which is equivalent to B2 ⊆ B1). In this case,(A2,B2) is a
superconcept of (A1,B1), and we write(A1,B1) ≤ (A2,B2). The
relation ≤ is called thehierarchical order of the concepts. The
set of all concepts of(G,M, I) ordered in this way is denoted by
B (G,M, I) and is called theformal concept lattice of the context
(G,M, I).

Example: The set of allpattern-property formal conceptsform a
concept lattice as illustrated in Figure 3. In this figure, every node
is a formal concept. The corresponding set of objects and attributes
of that concept are shown next to it, in boxes with rectangular and
rounded edges, respectively. Every box only list those objects or
attributes that are not implicitly inherited through the refinement
relation (discussed in next paragraph). We can retrieve theentire
set of extents (objects) by tracing all paths which lead downfrom
that node. On the other hand, the intents (attributes) can beobtained
by tracing all paths leading upward from that node.

If we consider the node labeled with the formal object DAG, itrep-
resents a formal concept with objects

{DAG,Sequence,Unordered Tree,Ordered Tree}

and with properties{Acyclic,DirectedEdge}

4.3 Concept Refinement

DEFINITION 5. Concept refinement is the process of obtaining a
sub-concept from a concept. Adding one or more attributes inthe
intent removes objects from the extent that do not conform tothat
property.

Example: We can refine the concept in the above example by
adding one property namedindegree_lte_1. In the refined con-
cept, the pattern DAG is omitted, as DAG does not conform to this
property.

4.4 Concept Refinement in DMTL Design

In our generic library implementation, we employed understanding
of formal concept hierarchy to develop mining algorithms that can
handle different types of patterns. Any algorithm that works for
patterns in a pattern-property concept automatically works for the
sub-concept. For patterns in sub-concepts, a list of pattern prop-
erties that is passed as template arguments matches partially and
automatically invokes the algorithm for the patterns belonging to
the immediate super-concept. However, there could exist a more
efficient implementation for the patterns in the sub-concept as they
might be comparably easier to mine. For those cases, we provide

57

a more efficient implementation of the algorithm as an overloading
of the template function.3 We discuss the implementation details in
the following section.

5 Implementation Issues

This section describes the implementation details of DMTL.Three
major subsections cover the architecture, data and algorithms of
DMTL respectively.

5.1 Architecture

Figure 4 provides a quick look at the various architectural compo-
nents (in rectangular boxes) of DMTL. We partitioned the compo-
nents into two main segments—thefront endand theback end. The
front end deals with the core mining process while the back end
provides the necessary storage support.

Storage Manager

level−1 VATs)
(generates

Parser
Database

Gigabase Memory PSTL

Representation
Pattern

Count Support

Generic
Mining
Algorithm

Initialize
Storage Manager

Initialize
Mining Algorithm

BACK END

FRONT END

Figure 4: High-level Architecture Diagram of the Data Mining
Template Library

5.1.1 Front-end: The Mining Engine

The mining task is initiated with all frequent patterns of length
one. This step is performed by reading the data from a source.
The source could either be a database, a flat file or another process
that is generating the data. This functionality is performed by the
Database Parsermodule (see figure 4). Then the generic algorithm
generates unique candidate patterns through candidate generation
and isomorphism checking, as we explained in section 3.1. The
task of finding the support of each candidate pattern is delegated to
the back end through theCount Supportmodule.

3If we were expressing algorithms with classes we would pro-
vide the more efficient algorithms as partial template specializa-
tions, but in the case of function templates one must currently use
overloading instead. Proposals to add partial specialization of func-
tion templates to the language standard have been made but todate
have not been accepted.

5.1.2 Back end: The Storage Manager

Frequent pattern mining is often performed on very large datasets.
Each iteration of the algorithm generates increasingly larger pat-
terns, and the number of candidate patterns also grows enormously
(especially, with low support) and does not fit in memory on most
machines. In a vertical mining paradigm, associated with each pat-
tern, a VAT also needs to be stored. Most mining algorithms do
not provide explicit means of memory management nor is the issue
addressed within the algorithm. The DMTL back end is dedicated
to storage management, which stores the patterns, VATs, andthe
associated one-to-one mapping from patterns to their VATs.The
back end also determines the support count of candidate patterns
and returns it to the front end.

The current state of DMTL has multiple implementations of the
back end—memory, Gigabase [9] and PSTL [7]—each one export-
ing the same interface. The Count Support module can select any
one of these by using template arguments. Gigabase is an embedded
object relational database which has its own storage management. It
also stores elements (patterns, VATs) in its database file. PSTL is a
library of persistent containers, akin to STL in its design.PSTL also
achieves persistence by maintaining memory-mapped data files. In
both the above cases, the mining results and intermediate data (like
VATs) are stored on disk and are available for processing at alater
point. Thus, DMTL provides an elegant solution when a memory-
based back end fails due to enormous growth of data. A flexible
interface makes addition of a new storage manager type quiteeasy.
We also considered using third party object stores as storage man-
agers. Lack of flexible libraries for object storage prompted us to
develop our own storage manager.

5.2 Data Types

The most vital data in DMTL are the patterns and their associated
VATs. Patterns are implemented with a graph structure. Elements
of a pattern are the vertex or edge labels of that graph. VATs are
implemented usingstd::vector, as they store a list of transaction
identifiers. And for the mapping between pattern and VAT, we use
std::map. However, pattern structure plays the most important
role in our generic mining algorithm, so we describe it further in
the following section.

5.2.1 Pattern Structure

In DMTL, vertices and edges are the basic structural building
blocks of every pattern. The most basic interface for a pattern
should thus provide methods for adding labeled vertices anddi-
rected edges between vertices. Figure 5 shows the C++ class in-
terface of the pattern concept that we mentioned in 3.1. It consists
of the most basic operations expected from a type modeling such
concept. A specific pattern (set, sequence, tree, etc.) is defined by
enlisting the respective pattern properties (pattern_props). The
canonical_code template parameter maintains a unique code cor-
responding to each pattern and is employed for isomorphism check-
ing. It also provides binary inequality testing operationsthat can
be used to implement the≤ operator for the pattern concept. The
graph_model is the underlying data structure used for storing the
above representation. A typical example of such a data structure is
an adjacency list. This design decision to parameterize thestorage
type aims at decoupling the pattern storage from the patterncon-
cept, such that an adjacency list based storage could be substituted
by a sparse adjacency matrix structure. Our design underlines the
fact that loose coupling between key design components is crucial

58

for the extensibility of a large software system. From the above
interface, a sequence such asA→ B can be constructed by invok-
ing theadd vertex("A") method followed by theadd vertex("B")
and add out edge(v1, v2, e)methods. The Boost Graph Library

template<class pattern_props, class graph_model,
class canonical_code>

class pattern {

public:
typedef vector<V_TYPE> VERTICES;
typedef typename VERTICES::const_iterator

CONST_VIT;

bool add_vertex(const V_TYPE& v);
bool add_out_edge(const V_TYPE& v1,

const V_TYPE& v2,
const E_TYPE& e);

bool add_in_edge(const V_TYPE& v1,
const V_TYPE& v2,
const E_TYPE& e);

CONST_VIT get_neighbors(const V_TYPE& v);
CONST_VIT get_rmost_path();

};

Figure 5: Pattern Class Interface

(BGL) [15] provides a more complete set of graph representations
and graph algorithms. At this moment we have refrained from us-
ing BGL’s graph representations, primarily to keep the design flex-
ible and open to various possibilities. In the future, we aimto uti-
lize BGL’s graph primitives to standardize our library. As seen in

Figure 6: Pattern Hierarchy

figure 3, the specific patterns are instantiations of the abstract pat-
tern concept. Each such concrete concept is represented by aset
of properties (or constraints) that define the pattern. For instance,
a directed acyclic graph (as the name suggests) has{acyclic, di-
rected} as its property set. The notion of having a set of properties

to represent a concept is crucial for the implementation of our li-
brary. Even though conceptually the properties are considered to be
a set, from the implementation perspective we treat them as an or-
dered list of properties. This ordering of properties is necessary for
the compiler to match a specialized pattern to an appropriate super-
pattern, if any algorithmic implementation is not available for that
specialized pattern. This leads to the pattern hierarchy tree in fig-
ure 6. Note that in figure 3, a node can have multiple parents while
in the pattern tree each pattern has a single parent. The importance
of the single-parent characteristic becomes evident when we realize
that selecting a super-pattern would lead to ambiguities incase of
multiple super-patterns. Using this pattern hierarchy tree, the order-
ing of the properties for a pattern is automatically enforced. They
are ordered along the path from the root to a pattern node. In a
nutshell, figure 3 represents the conceptual (theoretical)side of the
pattern mining problem whereas figure 6 represents the practical
(implementation) side of the problem.

We had the following goals while constructing the hierarchyof pat-
terns:

1. Abstract out the common aspects between the pattern types
and the algorithms,

2. Allow new patterns to be added to the hierarchy by introduc-
ing new properties, and

3. Propagate absence of a lower-level concept implementation to
a higher-level concept implementation.

The last objective above is a logical extension of using partial spe-
cialization (via function template overloading). The presence of a
single parent in the hierarchy tree enables finding the rightpattern
to which control should be dispatched. Our library providesimple-
mentations for what we call the four core patterns—sets, sequences,
trees and directed graphs. Apart from being the most popularpat-
terns, the core patterns can be considered to mark the complexity
classes in frequent pattern mining. Sets are at the simpler end of
the spectrum with sequences and trees (in that order) beforegraphs
at the other extreme. The following paragraphs describe thechal-
lenges faced in designing the library to achieve the first twogoals.

5.2.2 Pattern Properties Implementation

In order to enable dispatching to the appropriate pattern weuse the
set of pattern properties as template parameters. This set of pattern
properties is encapsulated in aproplist . Since we model properties
as types, theproplist is a static list of types provided for collecting
properties. It should be noted that such a type list is a static ac-
cumulator, i.e., it relies on the template compile-time mechanism
and hence incurs no run-time overhead. A type list gives us the
flexibility to append properties to it, making the design generic and
extensible. The type list was designed by borrowing ideas from
two of the C++ Boost libraries—the Boost Graph Library and the
Metaprogramming Library [15]. Since it is simply a container of
types, the class itself is not complicated and is given in Figure 7.
The classnull prop is used as the terminator of a type list. In ad-
dition to its utility as a type list, theproplist possesses the nice
feature of facilitating upward propagation of properties.This be-
havior is demonstrated in Figure 8. To keep the example simple, we
have stripped function parameters and return types that arenot rel-
evant for the example. In this example, we create property classes
and give the prototype of a function that generates candidates from
a given pattern. As pointed out above, candidate generationis one
of the three tasks a mining algorithm must undertake. In the fig-
ure, two prototypes of thecandidates function are provided—one

59

template<class prop,
class next_property=null_prop>

class proplist {
public:
typedef prop FIRST;
typedef next_property SECOND;

};

Figure 7: proplist Class Interface

/// Property class definitions ///
class directed {};
class acyclic {};
class planar {};
class null_prop {};

/// generic function ///
void candidates(const proplist<directed>&);

/// specialized function for DAGs ///
void candidates(const proplist<directed,

proplist<acyclic> >&);

///// an illustration of how it works /////
proplist<directed> digraph;
proplist<directed, proplist<planar> > planar_graph;
proplist<directed, proplist<acyclic> > dag;

/// Following function call compiles ///
/// to generic function. ///
candidates(digraph);

/// Following function call compiles ///
/// to specialized function. ///
candidates(dag);

/// Following function call compiles ///
/// to generic function ///
candidates(planar_graph);

Figure 8: Application of Property Hierarchy

for directed graphs and one for DAGs. DAGs do not possess cy-
cles, hence the specializedcandidates function does not generate
cyclic graphs as candidate DAGs. On the other hand, the generic
function generates all possible digraphs, including cyclic ones. This
relation between DAGs and directed graphs is reinforced by the
pattern hierarchy in figure 6). Hence, as expected, method calls
with directed graph and DAG as their input parameter types would
invoke the appropriate methods. Theplanar graph property list
is now introduced. It should be noted at this point that the pat-
tern propertyplanar is not defined in our library. Hence, it is a
new pattern property for representing planar graphs. LetP1 denote
the pattern type, digraphs, andP2 denote directed, planar graphs.
Since the properties definingP1 are a subset of the properties defin-
ing P2 we can sayP1 � P2. As a result acandidates method call
with planar graph as input parameter will invoke the method with
digraph as the formal parameter. Had there been a more efficient
implementation for planar digraphs, that would have been invoked.
To summarize, we have shown how theproplist can be used to
select the most appropriate implementation and how a new pattern
can be easily introduced into the framework.

5.3 Generic Algorithms

The core FPM algorithm shown in Figure 1 was introduced in sec-
tion 3.1. Even though we do not enforce a pattern to conform tothis
precise formulation of the mining process, most FPM algorithms
(including the ones in our library) conform closely to this outline.4

The pseudocode in figure 1 is implemented in thefreq_pat_mine
method.

template<class PATTERN, class MINE_PROPS,
class SM_TYPE>

void
freq_pat_mine(const pat_fam<PATTERN>& Fk,

const pat_fam<PATTERN>&, int& min_sup,
pat_fam<PATTERN>& freq_pats,
count_support<MINE_PROPS,

SM_TYPE >& cs)

The first parameter to this method,pat_fam, is a collection of pat-
terns that belong to the same prefix-based equivalence classand
can be implemented as an STL vector or a list. The third param-
eter,freq_pats, which is passed by reference, is used to collect
the final set of frequent patterns. Our customized containers ei-
ther retain the same interface as the popular STL containersor are
simply wrappers around STL containers. Note that in the above
examplePATTERN is the pattern representation. Hence it is not
just a container parameter but is used to pick the most efficient
implementation along the pattern hierarchy. The actual template
argument could represent any pattern. As the name suggests,the
count_support class is used for finding the support of the candi-
date patterns in the dataset.count_support is templated on the
mining properties and back-end database type. The former isnec-
essary because counting support differs for embedded and induced
mining (which is a mining property). The later (SM_TYPE) is neces-
sary for querying the appropriate storage manager to find thenum-
ber of occurrences of a pattern. Let us take a closer look at some of
the key steps insidefreq pat mine.

5.3.1 Candidate Generation

Pattern types differ in how they generate candidates. However,
there does exist significant commonality among the varying pat-
tern types. This was explored by us in a previous work [25]. The
freq pat mine method calls thejoin method to generate new can-
didates by joining two frequent patterns. The interface forthe join
method is as shown below:

template<class PAT_PROPS,
class MINE_PROPS,
class SM_TYPE>

pattern<PAT_PROPS,
MINE_PROPS,
SM_TYPE>**

join(const
pattern<PAT_PROPS, MINE_PROPS,

SM_TYPE>* pat_i,
const
pattern<PAT_PROPS, MINE_PROPS,

SM_TYPE>* pat_j)

4FP-tree is another approach for FPM. Since it is not as
widespread as the apriori based approach, DMTL does not currently
support it.

60

This method takes two pattern pointers and outputs an array of pat-
tern pointers (an array is chosen, as sometimes more than onepat-
tern is created from the join operation). Note that both the pattern
properties and the mining properties are associated with the pat-
tern type. Using pattern properties, the join method chooses the
most appropriate algorithmic implementation to perform the join
for this pattern type. Note that a join between patterns is associated
with an intersection of the corresponding VATs. For example, if a
patternA is a set{a,b,c} and another patternB is a set{a,b,d}
and their VAT (list of transactions they occur in) are{1,4,10} and
{1,10,12} respectively. A join (set union operation) produces one
pattern{a,b,c,d}, and the corresponding intersection of VATs (set
intersection operation) produces{1,10}, which is the VAT of the
new pattern. However, the join method shown here materializes
the pattern join only; the associated VAT intersection is done in the
back end.

5.3.2 Isomorphism Checking

For itemsets and sequences we can circumvent generating isomor-
phic patterns by intelligent candidate generation [1, 23].Essen-
tially, we exploit the lexicographic ordering on the labelsto avoid
generating redundant patterns. Isomorphism checking can also
be avoided for ordered trees by an appropriate candidate genera-
tion scheme [24]. However, unordered trees [12], free trees[3]
and graphs [21, 8] require isomorphism testing. The isomorphism
checker is provided by thecheck_isomorphism method and it is
templatized on the pattern properties. Our library provides special-
ized isomorphism routines for various patterns—directed graphs
and unordered trees, to name a few. The isomorphism checker can
be used as a stand-alone component and we believe that it could
further enrich the isomorphism checking support provided in BGL.

template<class PAT_PROPS,
class MINE_PROPS,
class SM_TYPE>

bool
check_isomorphism(pattern<PAT_PROPS,

MINE_PROPS,
SM_TYPE>* cand_pat)

5.3.3 Support Counting

The last step in an iteration is to determine the support of candi-
dates, and discard ones that do not pass themin sup(minimum sup-
port) criterion. The support counting functionality is supported by
theCount Supportblock in figure 4. Since support counting needs
to query the back end, this block acts as a liaison between thefront
end and the back end. The support counting module is common
across all the pattern types, since it does not need to know anything
about a specific pattern. At the same time thecount method is
independent of the back end since thecount support class is tem-
platized on the storage type. The interface for thecount method is
given below:

template<class PATTERN>
void
count(PATTERN* p1, PATTERN* p2, int min_sup)

As we mentioned under Candidate Generation above, a join of pat-
terns in the front end triggers an associated VAT intersection in
the back-end. We provided different back-end implementations, all
storing the same VAT but may be in different formats. For exam-

ple, the VAT stored in the Gigabase database is necessarily different
than that stored in the memory back end. Nevertheless, the VAT
intersection algorithm is the same. Inspired by STL’s design, we
used iterator concepts to decouple the algorithm from the actual
data structure. Figure 9 shows how iterators hide the data repre-
sentation from the algorithms. The figure shows the signature of

template<typename InIter,
typename OutIter>

void intersection(pair<InIter, InIter> itr_i,
pair<InIter, InIter> itr_j,
OutIter cand_vats);

Figure 9: Using Iterators with Generic Algorithms

theintersection method, which joins two VATs to generate the
VATs for new candidate patterns. The first parameter is a pairof
iterators pointing to the beginning and end of the containerthat cor-
responds to the first VAT. Similarly, the second parameter isfor the
second VAT. The two iterators use the sameInIter parameter since
patterns have to be of the same type to be intersected. The third pa-
rameter represents an output iterator and is used to collectthe set
of generated VATs. Note that, depending on the pattern, morethan
one VAT could be generated.

To reiterate, the design of DMTL consists primarily of threechal-
lenging components:

1. pattern structure,

2. pattern algorithms, and

3. back end storage facility.

Along with the above key components, the library contains multiple
smaller utilities for reading in data from multiple sources, parsing
data in multiple formats, and many others.

5.4 Incorporating new patterns

Representing patterns as property-based concepts allows users to
introduce new properties, and hence new patterns, with minimal
changes to the code. This effectively allows us to mine any type
of pattern. This idea of mining arbitrary patterns is novel and
extremely desirable in the data mining community. Let us walk
through an example to see how a completely new pattern can be
mined. At this time we would like to remind the reader that our
library currently implements only four key kinds of patterns—sets,
sequences, trees and graphs. Each of these marks a new strataof
pattern complexity. For this example let us say we want to mine all
frequent cliques, given an input dataset containing graphs. A clique
of a graph is a maximal complete subgraph. Suppose we want to
mine all frequentk-cliques, wherek is the number of nodes in the
clique. Since a clique is a specialized graph, we can guess that the
process of mining cliques might resemble that of mining graphs.
Let us reconsider the three core steps required for mining any pat-
terns and compare the functionality in each of those for the two
patterns. While the candidate generation step for graphs generates
multiple candidates, the candidate generation step for cliques needs
to generate only fully-connected graphs. This is much simpler than
generating all possible candidates. The isomorphism checking and
support counting for cliques does not change from regular graphs
since cliques are specialized graphs. The alert reader might note
that the task of mining cliques is similar to the task of mining

61

typedef proplist<directed,
proplist<connected> > CLIQUE;

typedef proplist<directed > DI_GRAPH;

// Specialization for the clique pattern. //
template<class PAT, class MINE_PROPS,

class SM_TYPE>
void
cand_gen(const pat_fam<proplist<directed,

proplist<connected, PAT> >& Fk,
....);

// Specialization for directed graphs //
// Can be used by cliques. //
template<typename T>
bool
check_isomorphism(pattern<proplist<directed,

T> >* cand_pat);

Figure 10: Adding a new pattern

itemsets. Although they are similar there is a subtle difference—
itemsets are guaranteed to have unique labels whereas this is not the
case with cliques. This argument reinforces our claim that cliques
just differ in the isomorphism-checking step. Even though this ex-
ample might seem contrived, it helps us see that a similar approach
can be taken for any other pattern. In the worst case, the userwill
need to provide implementations for all three stages of pattern min-
ing. From our experience with pattern mining, we can confidently
claim that all the patterns in figure 6 along with many others need
very few modifications on the part of the user. This has been the
motivation behind the library design and implementation. Figure 10
shows the interface for the specialized candidate generation method
for cliques. The first parameter is specialized to match a clique or
any of its sub-concepts. The rest of the parameters have beenomit-
ted as they are not relevant to the example. Clique mining canbor-
row the remaining methods that are specialized for directedgraphs.

6 Challenges and Future Work

The design and implementation of DMTL has helped us appreci-
ate some of the language features provided by C++. While spe-
cialization by overloading, iterator categories, and similar powerful
concepts are extremely important for generic programming,there
are other aspects that are not equally well explored. Features such
asconcept checkingandnamed parametersare features that would
benefit our implementation. Moreover, dispatching based oncon-
cepts rather than pure type checking would allow partial specializa-
tion based on concepts. Even though some of these features have
been implemented via template metaprogramming and made avail-
able in Boost libraries, our experience suggests advantages of in-
cluding these features in the language standard.

The current design of DMTL has substantial scope for improve-
ment. For example, our implementation of static lists to manage the
pattern properties is not necessarily the best design choice. Such
a property-list–based mechanism enforces a strict ordering of the
properties in order for the compiler to select the appropriate spe-
cialization. Ideally, we would have benefited from the support for
named parametersin C++. With such a feature we could omit

the properties that did not apply for a specific pattern and pro-
vide property in any order. Whilenamed parametersseems like
a good option, it might result in changes to the interface while in-
troducing newer properties in our framework. A different approach
to handling dispatching in this scenario would necessitatesupport
for concept based dispatching as against type matching based dis-
patching. Additionally, support for concept checking [19]in the
language specifications would enhance development efforts. We
also explored using thePropertyGraph concept in BGL to repre-
sent a set of properties but it did not fit well into our framework at
that point without compromising flexibility. Theenable if family
of templates is an approach for enabling certain function templates
and class template specialization. It could be used to achieving the
same effect as our property list approach. We hope to explorethis
opportunity with other ongoing development in DMTL. From the
data mining perspective, DMTL provides quite an extensive set of
FPM algorithms which perform better than existing stand-alone al-
gorithms. Since DMTL has been an evolving idea, now it is ready
for its first public release after undergoing numerous refinements to
the design. Some performance results based on an earlier version of
DMTL are presented in our previous work [25]. In the long term,
we plan to incorporate mining algorithms in other pattern spaces
such as maximal patterns and closed patterns. Our eventual goal
is to extend DMTL to other data mining tasks like classification,
clustering, and so on.

7 Acknowledgment

We would like to thank Professor David Musser for his suggestions
and feedback at various stages of this project.

8 References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association
rules. In21st Int’l Conference on Very Large Data Bases, 1994.

[2] D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: A maximalfre-
quent itemset algorithm for transactional databases. InProceedings of
the 17th International Conference on Data Engineering, pages 443–
452, Washington, DC, USA, 2001. IEEE Computer Society.

[3] Y. Chi, Y. Yang, and R. Muntz. Indexing and mining free trees. In3rd
IEEE International Conference on Data Mining, 2003.

[4] T. E. Fawcett and F. Provost. Fraud detection. pages 726–731, 2002.

[5] B. Ganter and R. Wille. Formal Concept Analysis: Mathematical
Foundations. Springer-Verlag, 1999.

[6] B. Goethals. Frequent pattern mining implementations repository.
http://fimi.cs.helsinki.fi/.

[7] T. Gschwind. PSTL—A C++ Persistent Standard Template Library.
In 6th USENIX Conference on Object-Oriented Technologies andSys-
tems, 2001.

[8] J. Huan, W. Wang, and J. Prins. Efficient mining of frequent sub-
graphs in the presence of isomorphism. Technical Report TR03-021,
University of North Carolina, 2003.

[9] K. Knizhnik. Gigabase. http://sourceforge.net/projects/
gigabase.

[10] R. Kohavi, D. Sommerfield, and J. Dougherty. Data miningusing
MLC++, a Machine Learning Library in C++. In8th Int’l Conference
on Tools with Artificial Intelligence, 1996.

[11] D. Musser, G. Derge, and A. Saini.STL Tutorial and Reference Guide.
Addison-Wesley, Second edition, 2001.

[12] S. Nijssen and J. Kok. Efficient discovery of frequent unordered trees.
In 1st Int’l Workshop on Mining Graphs, Trees and Sequences, 2003.

62

[13] J. Pei, J. Han, and R. Mao. CLOSET: An efficient algorithmfor min-
ing frequent closed itemsets. InACM/SIGMOD Int. Workshop on Re-
search Issues on Data Mining and Knowledge Discovery (DMKD),
pages 21–30, 2000.

[14] J. Siek, D. Gregor, R. Garcia, J. Willcock, J. Järvi, and A. Lumsdaine.
Concepts for c++0x. Technical Report N1758=05-0018, ISO/IEC JTC
1, Information Technology, Subcommittee SC 22, Programming Lan-
guage C++, 2005.http://anubis.dkuug.dk/jtc1/sc22/wg21/
docs/papers/2005/n1758.html.

[15] J. Siek, L. Lee, and A. Lumsdaine.The Boost Graph Library.
Addison-Wesley, 2002.

[16] A. Stepanov and M. Lee. The standard template library. Technical
Report 95-11(R.1), HP Laboratories, 1995.

[17] B. Stroustrup and G. D. Reis. Concepts - design choices for template
argument checking. Technical Report N1522=03-0105, ISO/IEC JTC
1, Information Technology, Subcommittee SC 22, Programming Lan-
guage C++, 2003.http://www.open-std.org/jtc1/sc22/WG21/
docs/papers/2003/n1522.pdf.

[18] J. Willcock, J. Järvi, A. Lumsdaine, and D. Musser. A formalization
of concepts for generic programming. InConcepts: a Linguistic Foun-
dation of Generic Programming at Adobe Tech Summit, San Jose, CA.
Adobe Systems, Apr. 2004.

[19] J. Willcock, J. Siek, and A. Lumsdaine. Caramel: A concept repre-
sentation system for generic programming. InSecond Workshop on
C++ Template Programming, Tampa, Florida, October 2001.http:
//oonumerics.org/tmpw01/willcock.pdf.

[20] I. Witten and E. Frank.Data Mining: Practical Machine Learning
Tools and Techniques with Java Implementations. Morgan Kauffman,
1999.

[21] X. Yan and J. Han. gSpan: Graph-based substructure pattern mining.
Technical Report UIUCDCS-R-2002-2296, University of Illinois at
Urbana-Champaign, 2002.

[22] M. Zaki. Scalable algorithms for association mining.IEEE Transac-
tions on Knowledge and Data Engineering, 12(3):372–390, 2000.

[23] M. Zaki. SPADE: An efficient algorithm for mining frequent se-
quences.Machine Learning, 42:31–60, 2001.

[24] M. Zaki. Efficiently mining trees in a forest. In8th ACM SIGKDD
Int’l Conference on Knowledge Discovery and Data Mining, 2002.

[25] M. Zaki, N. Parimi, N. De, F. Gao, B. Phoophakdee, J. Urban,
V. Chaoji, M. Hasan, and S. Salem. Towards generic pattern min-
ing. In International Conference on Formal Concept Analysis (Invited
Paper), 2005.

[26] M. J. Zaki, S. Jin, and C. Bystroff. Mining residue contacts in proteins.
In BIBE, pages 168–175, 2000.

[27] L. Zhao and M. J. Zaki. Tricluster: An effective algorithm for mining
coherent clusters in 3d microarray data. InSIGMOD ’05: Proceedings
of the 2005 ACM SIGMOD international conference on Management
of data, pages 694–705, New York, NY, USA, 2005. ACM Press.

63

Changing Iterators with Confidence

A Case Study of Change Impact Analysis Applied to Conceptual Specifications

Marcin Zalewski and Sibylle Schupp
Dept. of Computer Science and Engineering

Chalmers University of Technology
Göteborg, Sweden

{zalewski,schupp}@cs.chalmers.se

Abstract

Design and implementation of generic libraries in C++ are based
on conceptual specifications—what if such specifications have to
change? In a quite practical sense, this question arises because
of a new proposal for iterator concepts that is under discussion
among C++ library developers. Given the fundamental role of it-
erator concepts, it is important to anticipate which impactthe pro-
posed changes have on legacy code. Yet, no tool has been available
to safely check for unwanted effects. We introduce aconceptual
change impact analysis and apply it to the proposed iteratorspeci-
fication. Surprisingly, the analysis yields that the proposed iterator
concepts are neither (fully) backward- nor forward-compatible with
the current, standardized concepts. Since the analysis also lists the
sources of incompatibility, it can help library designers to avoid un-
intended effects of their suggested changes and, in general, provides
a base for assessing the impact of a conceptual change.

1 Introduction

In the design of today’s generic libraries, so-callediterator con-
ceptsplay a pivotal role in two ways. For one, they areiterator
concepts, that is, abstractions of pointers that encompassopera-
tions for range traversal and data access at a granularity that makes
them efficient basic building blocks of computations—in generic
libraries, sequential sorting, graph traversal, matrix operations, or
Fast Fourier Transforms, all are expressed in terms of iterator oper-
ations. Second, they are iteratorconcepts[11], that is, abstractions
of types, which group syntactic, semantic, and behavioral require-
ments on types without being types themselves. Almost all inter-
faces of the parameterized components of a generic library are ex-
pressed in terms of concepts. Together, concepts, the hierarchy they
typically form, and the conceptual interfaces they define, make out
the conceptual specification of a generic library.

In C++, generic libraries use the hierarchy of iterator concepts that
was introduced by the Standard Template Library (STL) [27] and
became part of the language standard when STL was accepted (see
[6, ch. 24]). Today, not only the algorithms of STL, MTL, BGL,
Boost [1, 13,14,26], and of other generic libraries depend on these
concepts, but also a large number of iteratortypesthat were mod-
eled after them as well as adaptors to those types and client libraries
that instantiate iterator-based conceptual interfaces.

With the increased experience with STL iterator concepts, how-
ever, library developers started to encounter problems. Asearly as
2001, J. Siek pointed out that some generic algorithms are under-
generalized when expressed in terms of the currently available iter-
ator concepts and submitted a new iterator specification forconsid-

eration by the C++ standard committee members [20]. Since then,
his proposal has been subject of discussions and of a number of
refinements [21–24]; the most recent, 5th revision (with additional
authors) dates from April 2004. While this 5th proposal is not yet
final, its continued discussion indicates a strong interestin revising
the current, standardized iterator concepts.

Yet, the proposed changes are far from trivial: they includethe in-
troduction of new concepts, the omission and modification ofold
ones as well as modifications to the interfaces of the genericalgo-
rithms. It is therefore non-trivial to see whether any adverse effects
on legacy code exist. It is also non-trivial to determine whether the
changes to the iterator hierarchy have precisely the effects the au-
thors intend them to have. Given the relevance of iterators,at the
same time, and their ubiquity in generic libraries (in C++), it is of
great importance that the impact of the introduced changes is well
understood. Until now, however, their impact had to be determined
by hand.

In this paper, we provide an automated assessment of the impact of
the proposed changes to the iterator specification. Our assessment
is based onconceptualchange impact analysis (CCIA), i.e., change
impact analysis applied to the conceptual specification of alibrary.
CCIA is a general analysis technique for generic library mainte-
nance that we currently develop. For this paper, we applied our
prototype to two versions of the iterator hierarchy: the onedefined
in the working draft of the C++ standard [10] and the one submitted
to the C++ committee by Siek, Abrahams, and Witt [24] (referred
to from now on asold andnewversion, respectively). In our case
study, we concentrate on the two kinds of intended impact that the
new proposal sets out to make, namely to: (i) ensure backward-
and forward-compatibility between old and new iterator hierarchy;
(ii) reduce conceptual requirements on the parameters of STL algo-
rithms, to increase their genericity.

To our surprise, the analysis shows that neither backward- nor
forward-compatibility hold—as a consequence, algorithm require-
ments are not always reduced. At the same time, the analysis pin-
points the parts of the specification that break compatibility, thus
can mark the first step towards aligning intended and actual ef-
fects. In some cases, it is the original concept definition that makes
forward-compatibility hard to achieve, in other cases, thegoals
of the new proposal impede backward-compatibility. In yet other
cases, compatibility problems come from the version we chose for
the comparison—we use the iterator specification of the mostre-
cent (working) draft of the C++ standard, which was not available
at the time of the new proposal.

Whether some, or all, of these incompatibilities are tolerable, is a

64

INPUTITERATOR

operation type
X u(a); X
u = a; X&
a == b convertible tobool
a != b convertible tobool
∗a convertible toT
a→m
++r X&
(void)r++
∗r++ convertible toT

SINGLEPASSITERATOR

operation type
++r X&
r++ X
a == b convertible tobool
a != b convertible tobool

READABLE ITERATOR

operation type
X u(a); X
u = a; X&
∗a convertible toT
a→m

T denotes the value type,X the type of the modeling iterator.
Figure 1. Concept tables of theINPUTITERATOR concept of the old hierarchy [10, Table 73] and its refactoring into the two concepts
SINGLEPASSITERATORand READABLE ITERATORof the new hierarchy [24]

INPUT OUTPUT

տ ր
FORWARD

↑
BIDIRECTIONAL

↑
RANDOMACCESS

(a) Old, standardized hier-
archy

INCREMENTABLE READABLE

↑ WRITABLE

SINGLEPASS SWAPPABLE

↑ LVALUE

FORWARD

↑
BIDIRECTIONAL

↑
RANDOMACCESS

(b) New, proposed hierarchy

Figure 2. Old and new iterator hierarchies. The old hierarchy
(a) is traversal-oriented, but mixes in value access. The new
hierarchy separates the two concerns into a refinement hierar-
chy of traversal concepts (b.left) and 4 non-refining concepts for
value access (b.right).

question the analysis does not seek to decide. The only purpose
of any change impact analysis, not just our CCIA, is to flag an
impact—whether this impact is wanted or unwanted, acceptable or
unacceptable, is for the developers to judge. In the particular case
of the iterator proposal, one has to weigh the benefits of increased
genericity against the risk of breaking legacy code. Automatically
generating a complete list of incompatibilities, our analysis can pro-
vide the base for such decision. Moreover, if the suggested changes
lead to a revision of the currently standardized concepts, the de-
tected incompatibilities can guide programmers in migrating to the
new concept specifications.

While the core algorithm of our CCIA can deal with any concep-
tual changes, we focus in this paper on its application to thechange
of iterator concepts. We prepare the discussion of the case study
with a description of the analysis proper, first informally in Sec-
tion 3, then technically in Section 4. Section 5 details the set-up of
the case study and Section 6 interprets the findings. To provide the
necessary background, Section 2 summarizes the two iterator con-
cept hierarchies under consideration. Sections 7–8 discuss related
and future work, along with our conclusions.

2 Iterator Hierarchies

In generic libraries, algorithms are specified in terms of require-
ments on types, not in terms of types themselves. For these generic
specifications, concepts are essential as they group requirements
and allow expressing them in an abstract way. In specifying require-

ments abstractly, concepts might seem to resemble abstractclasses
or interfaces from object-oriented programming but there are two
fundamental differences. For one, the requirements grouped by
concepts comprise syntactic, semantics, and behavioral proper-
ties. Concept descriptions therefore contain not only signatures
but also semantic constraints and complexity expressions.Sec-
ond, and more importantly, concepts reside outside of type systems,
to avoid imposing any requirements other than those of the con-
cept description—in particular any implementation requirements,
as they necessarily are established by abstract superclasses. Con-
cepts and their formalization are an area of active investigation by
a number of researchers (e.g., [25, 28]). Since we operate onan
intermediate representation of concepts, however, our analysis is
independent of a particular formalization.

For the discussion of the old and the new iterator concepts weuse
the following notation. Aconcepthas one (“single-parameter con-
cept”) or more (“multi-parameter concept”) parameters andgroups
requirementson its parameter(s). For the analysis, it suffices to con-
sider syntactic requirements; Figure 1 contains a number ofexam-
ples. There exist different kinds of relationships betweenconcepts,
requirements, and type parameters: A particular type (or types, for
multi-parameter concepts)modelsa concept when it fulfills all re-
quirements of the concept. A type parameter of a library interface
is constrainedby a concept if all actual parameter types have to
model this concept. A concept, finally, canrefineanother concept
where therefiningconcept includes all requirements of therefined
concept; Figure 2 shows two refinement hierarchies. Refinement
becomes more complicated when multi-parameter concepts are in-
volved, because the parameters of the refining concept must be
properly mapped to the ones of the refined concept.

Iterators are abstractions of range traversal and value access. In
the old iterator hierarchy, each concept includes operations of both
kinds. As the authors of the new iterator proposal point out,how-
ever, two problems arise when combining the concerns of range
traversal and data access. On the one hand, some iterator types
are intuitively incorrectly categorized with respect to their traversal
protocol because of the additional value-access requirements they
have to meet; for example the iterator type “vector〈bool〉 :: iterator ”
cannot model aRANDOMACCESSITERATORconcept, although the it-
erator types of all other vectors can (C++ Standard Library issue
96 [4] and Herb Sutter’s paper [29]). On the other hand, some algo-
rithm requirements are stricter than necessary, because value-access
requirements cannot be separated from the requirements on range
traversal. The new iterator concepts therefore are dividedinto two
groups: traversal concepts on the one hand, value-access concepts
on the other hand.

65

INPUT

operation type

∗a T
++r X&
(void) r++
∗r++ T
a == b bool

1 t e m p l a t e 〈 c l a s s It1, c l a s s It2 〉
2 where {Input 〈 It1 〉 , Input 〈 It2 〉}
3 b o o l equal (It1 first1 , It1 last1 , It2

first2);

(a) Old specification

INPUT

operation type

— —

INCREMENTABLE

operation type

++r X&
r++ X

SINGLEPASS

operation type

a == b bool

READABLE

operation type

∗a T

Refinement hierarchy:

INCREMENTABLE

↑

SINGLEPASS READABLE

տ ր

INPUT

1 t e m p l a t e 〈 c l a s s It1, c l a s s It2 〉
2 where {Input 〈 It1 〉 , Incrementable〈 It2 〉 , Readable 〈 It2 〉}
3 b o o l equal (It1 first1 , It1 last1 , It2 first2);

(b) New specification

Figure 3. An example of a change in the conceptual specification of a library

New and old iterator hierarchies are depicted in Figure 2 (for
brevity, the suffixITERATORhas been omitted in all concept names);
concept refinement is represented by the usual arrows. As thefigure
shows, the new hierarchy has five traversal concepts, correspond-
ing to the traversal requirements that the old hierarchy defines; all
value-access operations of the old hierarchy (except the index oper-
ator ofRANDOMACCESSITERATOR) have been factored out into alto-
gether four additional concepts. Every new concept, thus, contains
a subset of the requirements of an old concept. Conversely, it is
possible to reconstruct an original concept by re-defining it as the
refinement of particular traversal and value-access concepts.

In illustration, Figure 1 shows the oldINPUTITERATOR concept,
which, in the new hierarchy, is split into two concepts,SINGLEPAS-
SITERATOR and READABLE ITERATOR; their combined requirements
correspond to the originalINPUTITERATOR requirements. The iter-
ator proposal asserts that all new iterator concepts are backward-
compatible with the corresponding old concepts and that allold
concepts are forward-compatible with the corresponding new ones:
“iterators that satisfy the old requirements also satisfy appropriate
concepts in the new system” and “iterators modeling the new con-
cepts will automatically satisfy the appropriate old requirements.”
We will return to the details of compatibility in Section 5. For the
complete specification of the two hierarchies, we refer to their doc-
umentation [10, ch. 24], [24].

3 Example

Instead of plunging directly into the technical details, weintroduce
CCIA by means of an example. Given the original and a modified
version of the conceptual specification of a library, we demonstrate
how the impact of the changes is determined and how the analy-
sis can be used to confirm, or question, (implicit) assumptions that
underlie the changes.

Figure 3 shows the original and the modified conceptual specifica-
tion of a simple, generic library loosely based on the iterator con-
cepts introduced in the previous section. The original conceptual
specification of the library consists of one concept and one algo-
rithm, INPUT and “equal”, respectively. The algorithm “equal” has
two type parameters, “It1” and “ It2”, both constrained by the con-
cept INPUT. In the new version of the specification three new con-
cepts are added, theINPUT concept is modified, a refinement hier-
archy is introduced, and the constraints on “It2” are rewritten. The
new conceptINCREMENTABLE contains two requirements related to
range traversal. It is refined by the conceptSINGLEPASS,which adds
the ability to compare two iterators for equality. The thirdnew con-

cept,READABLE, consists of one requirement related to data access.
For backward-compatibility, theINPUT concept is part of the new
specification but it only refines the newly introduced concepts and
does not have any requirements of its own. The constraints onthe
type parameter “It2”, finally, are rewritten toINCREMENTABLE and
READABLE.

As in the official iterator proposal, the intention behind the changes
is to separate orthogonal concerns and to increase the granularity
of concepts, yet without compromising compatibility. CCIAcan
help to automatically check whether the changes have the intended
effect. In the particular context of our example, CCIA can help to
check: (i) whether theINPUT concept represents the same set of re-
quirements in the new and the old specification and (ii) whether the
genericity of the algorithm “equal” increases by rewriting the con-
straints on “It2 .” CCIA cannot help to check whether the refactor-
ing itself is correct and, for example, the orthogonal concerns have
been factored out into the right concepts; questions of thatkind,
however, can hardly be automated. In the remainder of this section
we describe the steps of the CCIA.

The analysis starts by encoding the original and the modifiedver-
sion of the specification. The concepts, requirements, and type pa-
rameters from Figure 3 and the relations between them are repre-
sented in the encoding. Next, the encodings of the two versions
are compared and the difference between them is computed in a
straightforward procedure. The comparison involves identifying
entities and relations that exist in the old but not in the newver-
sion of the specification, and vice versa. As a result, for example,
the conceptINCREMENTABLE is marked asaddedsince it exists in
the new but not in the old version.

From the encoding, a directed dependence graph is constructed,
which represents the two versions of the specification. The vertices
correspond to concepts, requirements, and type parameters, while
the edges represent the direction of change impact propagation im-
plied by three kinds of relations: concepts including requirements,
concepts refining concepts, and concepts constraining typeparame-
ters. A dependence graph for the specification in Figure 3 is shown
in Figure 4.

The core algorithm of the analysis consists of two stages. First, the
impact of the changes is propagated along the edges in the graph to
identify the type parameters that may have been affected. Second,
for every such potentially affected type parameter, the reversed (and
appropriately reduced) dependence graph is traversed to find the
sets of requirements that were added or deleted. For the example
in Figure 3 the analysis detects that for the type parameter “It1” the

66

Readable

Input

(void)r++

Incrementable

SinglePass

∗a

∗r++

r++ a==b

++r

It2

It1

new version
old version
both versions

Type Parameters

Concepts

Requirements

Figure 4. The dependence graph constructed for the specifica-
tion from Figure 3

requirements “(void)r++” and “∗r++” were removed and “r++” was
added and that for the parameter “It2” the requirements “(void) r++”,
“∗r++”, and “a==b” were deleted and “r++” was added.

At this point the analysis is complete. What is left to do, is to relate
the results back to the 2 original assumptions the library designer
made, namely, that the conceptINPUT still represents the same set
of requirements as before and that rewriting the constraints on the
parameter “It2” of the algorithm “equal” increases its genericity. As
it is easy to see now, neither assumption is justified. For one, the
requirements of the conceptINPUT have changed. The change is
implied by the change of requirements for the type parameter“ It1”,
which is constrained byINPUT in both versions of the specification.
Compared to the old specification, not only two requirementsare
deleted (“∗r++” and “(void) r++”), but also the requirement (“∗r++”) is
added. The new conceptINPUT, therefore, is neither forward- nor
backward-compatible with the old concept of the same name. Even
if it would be compatible, the genericity of the algorithm “equal”
would not have been increased. Although there are some require-
ments its parameter “It2” no longer has to meet (“(void) r++”, “ ∗r++”,
and “a==b”), it has instead to meet an additional requirement (“r++”).
Therefore, the genericity of the algorithm has not strictlyincreased.

4 Conceptual Change Impact Analysis

As the example in the previous section shows, CCIA is a two-pass
procedure. The first pass propagates changes, thus is essentially a
forward-reachability problem that determines whatmayhave been
impacted. The second pass depends on the particular change impact
of interest, thus varies between different applications. In case of the
new iterator hierarchy, where we would like to understand how the
change impacts compatibility and the requirements on algorithm
parameters, this second pass is a backward-reachability problem,
combined with special filters. This section discusses in detail the 3
major parts of the CCIA that we informally introduced in Section 3:
the representation of a conceptual specification and its change; the
data structure to store relevant relations and changes, a dependence
graph; and the analysis itself.

4.1 Intermediate Representation

Six constructs suffice to represent the conceptual specification of
a library: 3entitiesand 3relations, directly corresponding to the
relations that concepts establish (see Section 2):

• Type Parameters: Static parameters of the interfaces of a li-
brary

• Concepts: Sets of requirements

• Requirements: Operations, associated types, and any other
properties required from actual parameters

• Constrains-relations: Relations between type parameters and
concepts

• Refines-relations: Relations between concepts

• Requires-relations: Relations between concepts and require-
ments

For example, the conceptSINGLEPASSITERATOR(see Figure 1) con-
stitutes 4 requires-relations, defined by the 4 requirements listed
in its concept table, and one refines-relation, to the concept IN-
CREMENTABLEITERATOR (see Figure 2). The type parameter “It1”
of the algorithm “equal” we discussed in Section 3 constitutes one
constrains-relation to theINPUT iterator concept.

By definition, a change implies a “before” and “after.” We therefore
decided to encode the new and the old versions of a concept spec-
ification together and to express the changes as annotations. Any
entity or relation that exists in the new version but not in the old one
is marked asadded, and any entity or relation that exists in the old
version but not in the new one is marked asdeleted. Since entities
are “stand-alone” constructs, connected by relations only, a change
in type parameters, concepts, or requirements does not affect any
other parts of the conceptual specification unless it is propagated
by requires-, refines-, or constrains-relations. To compute the im-
pact of changes, it therefore suffices to focus on added or deleted
relations.

In the current prototype, we perform the annotations asaddedand
deletedmanually; if concepts were first-class citizens, a compiler
could easily perform the same task.

4.2 Dependence Graph

The six constructs representing a conceptual specificationnaturally
map to vertices in a graph, where edges capture the dependencies
between them. Using a dependence graph, we can formulate theal-
gorithms of the analysis in terms of graph algorithms and canstore
intermediate results by updating the graph.

As suggested by the representation of change discussed in the pre-
vious subsection, the graph is constructed from both the newand
the old version of the conceptual specification of a library.Instead
of presenting the full algorithm for graph construction, weextend
the graph from Figure 4 to show the details, for simplicity previ-
ously hidden. The extended graph is listed in Figure 5. As the
figure shows, every entity, but also every relation is represented by
a mainvertex along with one or more parameter vertices; the only
exception are type parameters, which are represented by a single
vertex only since they, obviously, do not have parameters them-
selves. Main vertices are labeled with the entity or relation they
represent, while their parameters are unlabeled. Since theexample
contains only concepts and requirements that depend on one param-

67

∗a

∗r++

a==b

++r

It2

r++

Incrementable

SinglePass

Input

Readable

(void)r++

It1

refines-relation

constrains-relation

requires-relation

Figure 5. The graph from Figure 4, extended by previously hid-
den vertices

eter, all entities and relations have only one parameter vertex. The
edges represent the direction of change impact propagation, i.e., in-
vert the dependencies that exist in the conceptual specification.

The extended graph in Figure 5 consists of the same 4 concepts,
5 requirements, and 2 type parameters as the simple graph in Fig-
ure 4. As in the simple graph, a solid line indicates that a con-
struct exists both in the old and the new specification, a dashed-
and-dotted line that it is part of the new specification only,and a
dashed line that it is part of the old specification only. For exam-
ple, theINPUT concept exists in both versions of the specification,
the requirement “r++” only in the new, and the requirement “(void
) r++” only in the old specification. Type parameters are related to
concepts through constrains-relations, concepts are related to con-
cepts through refines-relations, and concepts are related to require-
ments through requires-relations. For example, the dashededge
from the parameter of the (single-parameter) conceptINPUT through
a constrains-relation to the “It2” type parameter means that any ac-
tual type that binds “It2” had to model theINPUT concept in the old
specification. The dashed-and-dotted line from the parameter of
INCREMENTABLE through a constrains-relation to “It2” means that
any actual type that binds “It2” has to model theINCREMENTABLE

concept in the new specification.

4.3 Algorithm Constraints Change

After the graph is constructed, the analysis performs two passes.
In the first pass, the impact of changes is propagated: any vertex
marked as added or deletedmayhave some impact on any of the
vertices reachable from it. After the propagation of impact, the sec-
ond pass of the analysis detects the actual effects of the changes.
While the first pass always describes a forward-reachability prob-
lem, the second pass requires different algorithms, depending on the
change impact investigated. In this case study, the second pass is
based on backward-reachability but involves some additional logic.

The algorithm for propagating the impact of changes in pass 1is
rather straightforward. In short, it is a depth-first searchwhere all
vertices are found that are reachable from any vertex markedas
added or deleted. The search stops on deleted vertices if theroot

of the current search path is an added vertex, and on added vertices
if the root is a deleted vertex. The edges in the discovered paths
are marked as change-propagating edges. The resulting modified
dependence graph is used by the second pass of the analysis.

In this second pass we seek to answer whether the two concept hier-
archies are compatible and whether the genericity of algorithms has
increased. Both questions are addressed by the algorithm described
below (see Algorithm 1: Constraints Change). Given an arbitrary
type parameter and the dependence graph from pass 1, this algo-
rithm finds all requirements that were added or deleted for that type
parameter, i.e., all requirements implied by any of the constrains-
, refines-, and requires-relations reaching that type. Since a con-
straint can be added or deleted multiple times, through different
changes in the relations, theConstraints Changealgorithm records
with every change the path in the graph that leads to this change. A
high-level definition of the algorithm follows:

Algorithm 1. Constraints Change.
Input: G , a dependence graph where all change-propagating edges
are marked;T, a type parameter vertex.
Output: R, a set of tuples(p,S) such thatp is a path inG from T
to a modified vertexq andS is a set of paths fromq to the added or
deleted requirements onT that result from the change inq.
Local: reachingpaths, a container of the results of[Find changes].
Notation and subroutines:

1. path: A path in a reversed dependence graph.
2. forward or cross edge: An edge(u,v) wherev is colored black
and not an ancestor ofu in a search tree.
3. last(): Given a path, extracts the last vertex.
4. significantvertex(): Given a parameter vertex, finds the main
vertex of the corresponding relation or entity.

A1. [Filter and revertG .] G ′ is G with all edges reversed and non-
propagating edges removed.
A2. [Find changes.] Run depth-first search onG ′ with T as the root
vertex:
A2.1. If a vertex marked as added or deleted is discovered, record
current path inreachingpaths, mark vertex black, and backtrack
depth-first search.
A2.2. If a forward or a cross edge is detected in the depth-first
search, recursively run[Find changes] for the target of that edge.
Merge all detected paths with the current path and record it in reach-
ing paths.
A3. [Process Changes.] For each pathp in reachingpathswheres
is significantvertex(last(p)):
A3.1. If s is a constrains-relation, flatten the requirements of the
constraining concept. Record the tuple(p,{paths from the flattened
concept to requirements}) in R.
A3.2. If s is a refines-relation, flatten the requirements of the refined
concept. Record the tuple(p, {paths from the flattened concept to
requirements}) in R.
A3.3. If s is a requires-relation, record the tuple(p, {one-vertex
path of last(p)}) in R.

We conclude this section by returning to the example from Sec-
tion 3. Suppose we seek to validate the compatibility between the
old INPUT concept and the corresponding conceptsREADABLE and
SINGLEPASSof the new hierarchy. Before running the analysis, we
first need to state the intended (forward-) compatibility byredefin-
ing the INPUT concept as a refinement of these two concepts,SIN-
GLEPASS and READABLE. The analysis then starts by constructing
the dependence graph of the 4 concepts involved (SINGLEPASS re-
fines INCREMENTABLE), their requirements, the requires-relations,

68

and the refining-relations; the resulting graph, we have already seen
in Figure 5. We currently need to distinguish by hand which enti-
ties and relation are old, and which ones are new. Once the graph
is created, theConstraints Changealgorithm is executed.Con-
straints Changethen finds all requirements that have been added
or deleted for each of the two parameters “It1” and “ It2” of the al-
gorithm “equal” (see Section 3 for the complete list). To decide
whether compatibility holds, finally, the added and deletedrequire-
ments need to be compared. In the current prototype, we simply
check whether every deleted requirement was added at least once
and every added requirement was deleted at least once. Such simple
comparison could find false positives, for example, if a deleted re-
quirement continues to be associated with a type parameter through
another, unchanged path in the graph. For this particular study,
however, we are able to rule out those false positives: sinceall
iterators are re-factored, no old and unchanged path remains. In
the general case, false positives can be eliminated in a third, for-
ward pass that checks for any added or deleted requirement whether
other paths exist that neutralize the effect of addition or deletion,
respectively. We have not yet implemented this pass, but thealgo-
rithm Constraints Changeis prepared insofar it already associates
changes and paths.

5 The Study

We now turn to the core of this paper, the case study, which applies
CCIA to two versions of (conceptual) iterator specifications. In
this comparison, the original iterator specification is taken from the
C++ working draft [10], the new version from the iterator proposal
submitted to the C++ standard committee [24].

Before the analysis can be conducted, the conceptual specifications
have to be encoded in a form from which the dependence graph
(see Section 4.2) can be constructed. Unfortunately, this encoding
cannot be automated. Although large parts of an iterator specifica-
tion in C++ are provided as a table of valid C++-expressions (see,
e.g., Figure 1)—which in fact could be parsed and automatically
processed—these tables are supplemented by auxiliary or quali-
fying definitions in natural language, sometimes given by means
of examples. Further syntactic and semantic requirements are dis-
persed throughout the documentation—manual encoding is thus un-
avoidable. As one might expect, however, not all semi-formal de-
scriptions map directly to a machine-usable format.

In this section we first specify our encoding scheme and explain
for each kind of encoding how it is constructed. Next, we listthe
parts of the documentation we could not “naturally” expressin our
encoding scheme and make explicit the decisions we therefore had
to make. We end the section with a description of the setup of the
study and the format of the results.

5.1 Encoding Scheme

We encode the specification in terms of the entities and relations
introduced in Section 4.1. An encoding of an entity or relation con-
sists of a row of text, which itself is a triple of: a tag, corresponding
to the encoded entity or relation (i.e.,Type, Concept, Requirement,
Constrains, Refines, Requires); the relation- or entity-specific in-
formation; and a flag (Added, Deleted, None) that indicates whether
the entity or relation exists in the new but not old, old but not new,
or in both specifications.

An excerpt of the encoding is shown in Figure 6. Line 1 indicates
that the conceptWRITABLE ITERATORwas added in the new version

and has two parameters: “Iter ” and “Value.” Line 2 means that the
requirement “V o; I a; ∗a = o;”, with parameters “I” and “V”, exists
in both versions, i.e., there exists a concept in the old, anda concept
in the new version that both include this requirement. Line 3asso-
ciates this requirement with the newly added conceptWRITABLE IT-
ERATOR and line 4 specifies thatWRITABLE ITERATOR refinesCOPY-
CONSTRUCTIBLE. Lines 5 through 8 show that the parameter of the
algorithm “iter swap”, “ ForwardIterator”, was constrained by theFOR-
WARDITERATORconcept in the old version and is constrained by the
WRITABLE ITERATOR and READABLE ITERATOR concepts in the new
version. The full encoding, of 330 lines, comprises both iterator
specifications and the conceptual interfaces of STL algorithms. It
is available on the accompanying web-page [2].

Although all encoded specifications are extracted from the docu-
mentation, the different kinds of encoding are based on different
parts of the documentation and require different degrees ofman-
ual intervention. Concepts, to begin with, are relatively easy to
encode. Since each table in the documentation corresponds to one
concept, we can almost mechanically create one concept entity per
table. We then only need to infer from the syntactic requirements
in the concept table how many parameters the concept has: if the
requirements refer to only one modeling type, the concept has one
parameter only. All iterator concepts except theOUTPUTITERATOR

concept in the old, and theWRITABLE ITERATORconcept in the new
specification are single-parameter concepts.

Encodings for requirement entities, next, are created one per row
of the concept tables. Since the tables contain valid expressions in
C++, we can use thevalid-expressions notationthat Stroustrup in-
troduced [28]. This notation, very simply, specifies requirements
in terms of ordinary C++ expressions. Using C++ as specification
language makes minor adjustments in the interpretation of an ex-
pression necessary; the only deviation from the C++ semantics that
is important in our context, however, concerns constructorexpres-
sions. In C++, the semantics of the expression “X a;” includes the
declaration of a variable declaration and its default construction. In
the valid-expression notation, the expression refers onlyto a vari-
able declaration. Following the valid-expression notation, for ex-
ample, the requirement “∗a with the result convertible toT” (see the
concept table ofREADABLE ITERATORin Figure 1) is encoded as “X a
; X::value type v = ∗a;” (where, as just explained, the first expression
denotes a declaration only, no default construction). Eachrequire-
ment is recorded only once, i.e., if two concepts have a requirement
that can be represented by the same abstract syntax, we encode this
requirement only once, but add one requires-relation to each of the
two concepts. Again, a concept-aware compiler would have already
identified requirements that are identical at an abstract level.

While the encoding of requires-relations follows directlyfrom the
requirements we just discussed, the creation of refines-relations de-
mands careful reading of the working draft of the C++ standard,
since the refinement information is given at different places in the
document. In the new iterator proposal, this task is made simple, as
all refinement relations are always stated in the table headings.

The type parameter entities and their constrains-relations, finally,
are encoded based on the section in the new iterator proposalthat
lists all changes to the conceptual interfaces of algorithms that re-
sult from the proposal. The changes are expressed as rewriterules
of the form “X → Y” where X andY are type parameters that are
constrained by concepts of the same name.

In illustration, Figure 7 lists the rewrite rule that applies to the sec-
ond occurrence of the conceptual constraint INPUT in the two STL

69

1 Concept,"WritableIterator","Iter,Value",ADDED
2 Requirement,"V o; I a; *a = o;","I,V",NONE
3 Requires,"WritableIterator","Value o; Iter a; *a = o;","Iter,Value","I,V",ADDED
4 Refines,"WritableIterator","CopyConstructible","Iter","T",ADDED
5 Type,"iter_swap::ForwardIterator",NONE
6 Constrains,"ForwardIterator","iter_swap::ForwardIterator","Iter",DELETED
7 Constrains,"WritableIterator","iter_swap::ForwardIterator","Iter",ADDED
8 Constrains,"ReadableIterator","iter_swap::ForwardIterator","Iter",ADDED

Figure 6. An excerpt of the specification encoding, illustrating each of 6 encoding kinds

INPUT (2) → INCREMENTABLE andREADABLE

equal, mismatch
Figure 7. Example of a rewrite rule, applicable to (the second
occurrence of)INPUT in the interface of the algorithmsequal and
mismatch . Parameters constrained byINPUT (2) are to be con-
strained by INCREMENTABLE and READABLE.

algorithms “equal” and “mismatch” and replaces there the (old) IN-
PUT iterator concept by the two (new) concepts INCREMENTABLE
and READABLE. Assuming that the corresponding concepts and
type parameter have already been encoded, each rewrite rulethere-
fore constitutes the encoding of at least 2 constrains-relations: one
deletedrelation to the constraining concept in the old version and
addedrelations (1, or more ifY is a set) to the constraining con-
cept in the new version. In the proposal, each rewrite rule isac-
companied by the list of algorithms for which constraints should be
rewritten.

5.2 Design Decisions

The requirements of a conceptual specification often are expressed
in a conditional form. For example, the return type of the valid
expression “∗a” for FORWARDITERATOR is stated as “T if X is mu-
table, otherwise const T& ” (whereT denotes the value type,X the
type of the modeling iterator) [10, Table 75]. Other conditional
specifications in disguise have the form of optional (type) qualifi-
cation or different return types of overloaded expressions. Since
in our scheme, conditional requirements cannot be expressed in a
straightforward way, we had to modify the conceptual hierarchies
by introducing new concepts that represent alternative branches of
conditions.

In the old hierarchy, we introduced the 3 conceptsMU-
TABLEFORWARDITERATOR, MUTABLEBIDIRECTIONAL ITERATOR, and
MUTABLERANDOMACCESSITERATOR, corresponding to the“if muta-
ble”-condition in the specification. In the new hierarchy, we re-
placed the conceptLVALUE ITERATOR by the two conceptsREAD-
ABLELVALUE ITERATOR and WRITABLELVALUE ITERATOR, to capture
the optionalcv-qualification of the return type of the dereferencing
operator “∗.” Moreover, we added the conceptsREADABLERANDO-
MACCESSITERATOR and WRITABLERANDOMACCESSITERATOR as re-
finements ofRANDOMACCESSITERATOR, to match the precondition
“pre: a is a readable iterator” of the “a[n]” operation and the pre-
condition “pre: a is a writable iterator” of the “a[n]=v” operation,
respectively [10, Table 77]. For a different reason, finally, we intro-
duced the conceptsBASICOUTPUTITERATORandBASICWRITABLEIT-
ERATOR. They are single-parameter variants of the conceptsOUT-
PUTITERATORandWRITABLE ITERATOR, which have two parameters,
thus cannot be directly refined by any single-parameter iterator con-
cept.

We also had to make a decision whether or notFORWARDITERATOR

and MUTABLEFORWARDITERATOR refine bothINPUTITERATOR and
OUTPUTITERATOR. This relation is not clear, since the C++ standard,

Old concept Corresponding new concepts

INPUT READABLE, SINGLEPASS

OUTPUT WRITABLE, INCREMENTABLE

FORWARD READABLE, READABLELVALUE , FORWARD

MUTABLEFORWARD READABLE, READABLELVALUE , FORWARD,
BASICWRITABLE, WRITABLELVALUE

BIDIRECTIONAL READABLE, READABLELVALUE ,
BIDIRECTIONAL

MUTABLEBIDIRECTIONAL READABLE, READABLELVALUE ,
BIDIRECTIONAL, BASICWRITABLE,
WRITABLELVALUE

RANDOMACCESS READABLERANDOMACCESS, READABLE,
READABLELVALUE , RANDOMACCESS

MUTABLERANDOMACCESS READABLERANDOMACCESS, READABLE,
READABLELVALUE , RANDOMACCESS,
WRITABLERANDOMACCESS, WRITABLE,
WRITABLELVALUE

Table 1. Correspondences between the old and the new iterator
concepts

on the one hand, states in the introductory paragraphs to theiterator
specification that theFORWARDITERATOR concept includes the re-
quirements of theINPUTITERATOR andOUTPUTITERATOR concepts.
On the other hand, the tabular specification of theFORWARDITERA-
TOR concept contains requirements that conflict with this statement
(see library issue 299 on the C++ standard web-page [3]). After
careful consideration we have decided to include the refinement in
our specification as it seems to reflect the common understanding
of the iterator concepts.

Table 1 lists all concepts that are included in this case study along
with their correspondence relation. Using this table, compatibility
can be decided row-wise: a concept in the old hierarchy is forward-
compatible if any type modeling the concept also models the new
concepts in the same row. Conversely, a concept of the new hierar-
chy is backward-compatible if every modeling type also models the
old concept in the same row.

5.3 Setup

The setup of the case study is now easy to explain. To check the
compatibility between the old and the new concepts, we proceed
essentially as already illustrated in Section 4.3: based onthe ex-
pected compatibilities defined in Table 1, we redefine all oldcon-
cepts in terms of their counterparts in the new proposal, i.e., we
mark all requires- and refines-relations from the old specification
asdeletedand thenadd refines-relations from every old concept to
the corresponding new one(s). Next, we create 9 type parameters—
one per concept parameter of the old hierarchy (recall that there
are 8 concepts in the old hierarchy andOUTPUTITERATOR has 2
parameters)—andadd and deleteconstrains-relations that reflect
their changed constraints from the old concept to the new cor-
responding concepts. Then, we call the routine for constructing
the dependence graph and apply the algorithmConstraint Change
to each type parameter we have added. If any requirements are

70

Con. Requirement

1 O typename Iter::value type; b

2 O Iter r ; Iter q = r++; f

3 O typename Iter::difference type ; b

4 O typename Iter::pointer ; b

5 O typename Iter::reference; b

6 O Iter r ; const Iter & q = r++; b

7 O Iter r ; V o; ∗r++ = o; b

8 I Iter r ; Iter q = r++; f

9 I typename Iter::difference type ; b

10 I typename Iter::pointer ; b

11 I typename Iter::reference; b

12 I Iter r ; r++; b

13 I Iter r ; Iter :: value type q = ∗r++; b

14 F Iter r ; const Iter :: value type& q = ∗r++; b

15 MF Iter r ; Iter :: value type& o = ∗r; f

16 MF Iter r ; Iter :: value type o; ∗r++ = o; b

17 B Iter r ; Iter :: value type q = ∗r--; b

18 RA Iter r ; Iter :: value type q = r [n]; f

19 RA Iter r ; const Iter :: value type& q = r [n]; b

20 MRA Iter r ; Iter :: value type v ; r [n] = v; f

whereO=OUTPUT, I=INPUT, F=FORWARD, MF=MUTABLEFORWARD,

B=BIDIRECTIONAL, RA=RANDOMACCESS, MRA =MUTABLERANDOMACCESS

Table 2. The requirements that cause forward-incompatibility
(f) or backward-incompatibility (b). False positives are indi-
cated bystricken text.

deleted but not added, backward-compatibility is broken. Corre-
spondingly, if any requirements are added but not deleted, forward-
compatibility is broken.

To calculate the changes in the requirements of STL algorithms, we
encode the rewrite rules from the iterator proposal (see Section 5.1)
and apply Algorithm 1,Constraint Change, to the type parameters
of the algorithms. The genericity of an algorithm is increased if
there are requirements that were deleted but not added, and no other
requirements were added but not deleted.

6 Results

The analysis returns its output in different formats, whichcan be
controlled by the user through flags. Three of these output formats
are related to the issue of compatibility: with increasing verbosity,
compatibility summarysummarizes for each concept whether or not
it is compatible,compatibility short outputlists how many times a
requirement was deleted or added, andcompatibility incompatible
shows the requirements causing the incompatibility of a particular
concept. A fourth output format,genericity change, summarizes for
all type parameters of all algorithms whether or not their genericity
was increased. The full and unprocessed results of Algorithm 1
can also be turned on. Figure 8 shows examples of the output for
each kind of format; the complete traces are available on theweb-
page accompanying this paper [2]. In this section, we present and
interpret the results of the case study.

6.1 Forward- and Backward-Compatibility

Surprisingly to us, the analysis yields that new and old iterators
are not compatible. More specifically, none of the 8 old concepts
and their corresponding new concepts (in the sense of Table 1)
is backward- or forward-compatible. Even if we ignore incom-
patibilities propagated through the refinement hierarchy,there are

only 3 concepts that introduce no incompatibilities on their own:
FORWARDITERATOR andBIDIRECTIONAL ITERATOR (yet, see the dis-
cussion below), and theMUTABLEBIDIRECTIONALITERATORconcept
that we had to introduce (Section 5.2). These 3 concepts willbe au-
tomatically both backward-compatible and forward-compatible if
their refined concepts are “fixed.”

Table 2 details the incompatibilities. Following the refinement hier-
archy, the table lists for each concept exactly the incompatibilities
this concept introduces, i.e., omits those incompatibilities that are
only propagated through refinement. Each row, thus, corresponds to
one incompatibility; the kind of incompatibility is indicated in the
last column. For example, line 1 of the table indicates that the asso-
ciated type “value type” of the old specification ofOUTPUTITERATOR

is missing in the specification of the corresponding new concepts
(WRITABLE ITERATORandINCREMENTABLEITERATOR), which breaks
backward-compatibility. A further 6 incompatibilities ofthe OUT-
PUTITERATOR concept are given in lines 2-7. They all propagate to
all refining concepts—that is, all other concepts except theINPUTIT-
ERATOR concept—but are not listed again in the table.

It is important to note that some incompatibilities detected by our
analysis are in fact wrong, albeit in a subtle way that shows agen-
eral limitation of our approach. We indicate all faults on part of
the analysis by stricken text in the last column of Table 2. Asthe
table shows, there are 6 cases of false positives: 5 due to thecom-
pound expressions “∗r++” and “∗r--” (lines 7,13,14,16, and 17) and
one (line 12) caused by the “r++” expression. The latter is a false
positive because it is implied by the requirement “Iter r ; Iter q =
r++;” of the INCREMENTABLEITERATOR concept. The former ones,

coming from compound expressions, are due to the granularity of
our analysis, which looks at expressions in an atomic way andthere-
fore compares only expressions for equality, not their compositions.
Thus, if a compound expression is changed into its constituents, the
analysis only recognizes that the compound expression is deleted
and certain new expressions are added, but does not attempt to de-
termine whether a composition of expressions exist that is equiv-
alent to the deleted compound one. Exactly such decomposition,
however, takes place in the iterator proposal: the requirement “∗
r++” of the old proposal, which merges the concerns of traversal
and value access, is decomposed into two requirements, “r++” and
“∗r” (which are then associated to different concepts). For some
concepts, for example theFORWARDITERATOR concept, the corre-
sponding new concepts define these 2 new valid expressions sothat
their composition in fact is identical to the original compound ex-
pression. Not knowing of this identity, however, our analysis flags
these expressions as backward-incompatible.

For the particular cases of the iterator proposal, it would be quite
easy to establish the identity of “∗r++” and its two constituents in
an ad-hoc fashion. For a systematic handling of implied identities,
however, the analysis would have to be extended by an extra in-
ference step. A simpler alternative might seem to avoid these false
positives altogether, by breaking composite requirementsdown into
their constituents and representing them in the dependencegraph
as a sequence of non-compound expressions. Yet, such decompo-
sition changes the semantics of a requirement since the sequential
execution implies the existence of a temporary, which, for example,
cannot be assumed for theINPUT iterator concept.

The incompatibilities in Table 2 can be grouped into 3 categories.
The most interesting ones are the ones that come from the separa-
tion of traversal and access concerns—the main motivation of the
new proposal. In the old iterator concepts, these concerns were
combined not just in the concept specification as a whole, butsome-

71

Full:
InputIteratorModel --> constrains --> Iter (of InputIterator) --> refines --> (DELETED)

T (of CopyConstructible) --> requires --> T (of T t; T(t);)
T (of CopyConstructible) --> requires --> T (of const T u; T(u);)

InputIteratorModel --> constrains --> Iter (of InputIterator) --> refines --> (ADDED)
Iter (of ReadableIterator) --> requires --> T (of typename T::value_type;)
Iter (of ReadableIterator) --> requires --> T (of T::value_type v; T p; v = *p;)

Compatibility-summary:
InputIteratorModel NOT COMPATIBLE
ForwardIteratorModel NOT COMPATIBLE

Compatibility-incompatible:
InputIteratorModel

Requirement "T t; T q = t++;" added 1 times, deleted 0 times. (FORWARD INCOMPATIBLE)
Requirement "typename T::difference_type;" added 0 times, deleted 1 times. (BACKWARD INCOMPATIBLE)

Compatibility-short:
OutputIteratorModelIter

Requirement "T t; T u; T& q = (t = u);" added 1 times, deleted 1 times.
Requirement "T t; const T v; T& q = (t = v);" added 1 times, deleted 1 times.

Genericity-change:
find_first_of::ForwardIterator2 --- Genericity not increased.

Figure 8. Examples of five different kinds of output from the analysis

algorithms Del.

reverse copy, find end, adjacent find, search, search n,
rotate copy, lower bound, upper bound, equal range,
binary search, min element, max element

1

find first of 3, 4

copy backwards 1, 0

equal, mismatch, transform 4

Table 3. STL algorithms with increased genericity, groupedby
the number of requirements removed per parameter (second
column); backward-compatibility is provided.

times in one requirement; we have already seen the example “∗r++.”
Separating these expressions in a traversal-expression onthe one
hand, a value-access expression on the other hand, the new hierar-
chy cannot always define them so that the original compound ex-
pression remains valid. Lines 2, 6, and 8 in Table 2 show such
incompatibilities.

A second group of incompatibilities are associated types; generally,
the new concepts have fewer associated types than the old ones (see
lines 1,3-5,9-11). This difference is a result of the proposal only re-
quiring the minimal set of associated types from the new concepts.
For example, while every old concept is required to have fouras-
sociated types ([10, Sec. 24.3.1]), it makes no sense to require the
OUTPUTITERATORconcept that does not provide a difference opera-
tion to define “difference type”.

The final kind of incompatibilities results from the intended com-
patibility with the latest C++ standard. In our study, we used the
more recent draft version of the standard, because it corrects some
mistakes and resolves some ambiguities in the natural-language
specification of iterators. Compared to the standard, however, the
draft also changes the return type of the index operator “r [n]”, re-
sulting in the two incompatibilities listed in lines 18 and 19. In
addition, the incompatibility in line 15 is caused by different re-
turn type of the dereference operator “∗a” of the FORWARDITERA-
TOR concept in the draft and in the standard. The last expressionin
line 20, finally, “Iter r ; Iter :: value type v ; r [n] = v;”, is not required
by the old concepts, neither in the draft and nor in the actualstan-
dard, but was added in the new proposal to fix a problem in the old
iterator hierarchy (C++ issue 299 [3]).

6.2 Algorithm Requirements

Refactoring the iterator hierarchy would be an academic exercise
if it would not allow rewriting the constraints on STL algorithms
so that they become more generic. In fact, the main goal of the
proposal, as pointed out in the introduction, was to be able to in-
crease the genericity of STL and other iterator-based libraries. The
proposal therefore includes a set of rewrite rules that define for
each STL algorithm how the constraints on its parameters canbe
rewritten in the presence of the new concepts. One example ofsuch
rewrite rule we have already seen in Figure 7. There, the underlying
assumption was that rewritingINPUT asINCREMENTABLEandREAD-
ABLE relaxes the constraints on certain parameters of the algorithms
“equal” and “mismatch”. The backward-incompatibilities, however,
that we reported in the previous section (Table 3), inevitably inval-
idate any such assumptions since every backward-incompatibility
introduces an additional requirement, which the parameters origi-
nally did not have to meet. For example, changing constraints as
suggested in Figure 7 introduces for the algorithms “equal” and
“mismatch” the additional requirement “Iter r ; Iter q = r++;” (line
12, Table 3), which comes from theINCREMENTABLE concept but
was not included in the oldINPUT concept. It follows that it impos-
sible for the analysis to confirm that the genericity of any algorithm
has been increased.

Since it is of interest nevertheless to assess how much the generic-
ity could increase we conducted an experiment where we bypassed
all incompatibility issues. Assuming, to that end, that allcompati-
bilities hold as intended and defined in Table 1, we did not directly
apply the rewrite rules that the proposal specifies. Instead, we ex-
pressed these rewrite rules in terms of new concepts only: using the
intended correspondences, we replaced old concepts on the right-
hand sides of the rewrite rules by their corresponding new concepts;
Figure 9 shows how the rule from Figure 7 is transformed. The
“adjusted” rules represent the change in the genericityintendedby
the proposal authors by neutralizing the unwanted effects of incom-
patibilities (the new concepts are compatible with themselves) but
preserving the effects of the original rules on the genericity of algo-
rithms. We applied CCIA to two versions of the STL specifications
that both use the new concept hierarchy but differ in the constraints
on algorithm parameters as prescribed by our “adjusted” rewrite
rules. Although the transformation of the original rules isad-hoc,
it allows us to determine which algorithms in STL benefit fromthe
new iterator concepts.

72

READABLE andSINGLEPASS→ INCREMENTABLE andREADABLE

equal, mismatch
Figure 9. Modified rewrite rule from Figure 7. The old con-
cept INPUT is replaced by its corresponding new concepts, see
Table 1.

Table 3 shows for which algorithms their genericity increases pro-
vided the intended compatibility between the new and the olditer-
ators holds. The algorithms are grouped by the number of require-
ments removed for each of their type parameters. From the 42 STL
algorithms that are affected by the changes to the iterator concepts,
17 became more generic.

7 Related Work

Change impact analysis (CIA) describes no particular technique,
but rather a collection of techniques varying with the purpose of
the analysis. To convey an impression of the potential breadth of
analyses, we refer to the recentGuidelines for the Oversight of Soft-
ware Change Impact Analysis Used to Classify Software Changes
as Major or Minor by the US Federal Aviation Administration
(FAA) [5]. Somewhat to the extreme, these guidelines suggest
as many as 10 analyses: traceability, memory and timing margin,
data and control flow, input/output, development environment, op-
erational characteristics, certification maintenance, and partitioning
analysis. Bohner and Arnold [8] provide an overview of the most
frequently used analyses, traceability and dependency.

In applications to software evolution or early phases of thesoftware
life cycle, CIA essentially requires the identification or classifica-
tion of the computed effects. In applications to later phases of the
software cycle, the identification of change impact often marks the
first step only, since these effects must be communicated to other
tools or analyses. Our CCIA falls in the first category as it istyp-
ical for CIAs based on specifications or requirements documents
(e.g., [7, 15, 30]). In the latter category, in particular the number of
applications to regression testing stands out (e.g., [16,18]).

The complexity of CIA justifies its use in large software systems
when changes are difficult to detect since their effects are non-
local. Non-locality of impact in imperative programming usually
comes from side effects. In object-oriented programming (OOP),
subclassing, dynamic binding, and polymorphism are sources of
non-locality. Dating back at least to Kung et al. [12], much work
has been done to provide CIAs for OOP at different (e.g., method
or class) levels of granularity and for different purposes.Since our
analysis applies to generic libraries, where the non-locality of im-
pact is due to the separation of concepts and types, its closest coun-
terparts are class-level CIAs as for example the one by Rajlich [17],
although we do not use his snapshot model for change propagation.
Inspired by the notion of “atomic changes” [19], our representa-
tion of change implies that all changes take place simultaneously.
The dependence graph itself is similar to the program dependence
graphs of Horwitz et al. [9], even though their graphs represent de-
pendencies between components of an imperative program while
we represent dependencies in library specifications. Of thethree
classes of problems they make out as applications of dependence
graphs, i.e., slicing, differencing, and integration, ouranalysis falls
into the class of differencing problems.

CIA is often implemented using program slicing [31]. Since our
CCIA concerns conceptual specifications, the classical slicing cri-
terion (s,v), wheres is a statement andv a variable used ins, is
not applicable. Yet, if we allow as a slicing criterion a single entity

or relation and base slicing not on a call graph, but on a graphof
the conceptual specification, then the two passes of the CCIAcan
be understood as forward- and backward-slices, respectively, on a
type parameter through the dependence graph.

8 Conclusions and Future Work

Among designers of generic libraries in C++, there is an ongoing
discussion about changing the specification of iterator concepts—
the basis of STL and many other generic libraries. Because ofthe
fundamental role of iterator concepts, the effects of the proposed
changes have to be well-understood. Especially important are the
compatibility between the old and the new iterator conceptsand the
impact of the new concepts on the genericity of (legacy) libraries.
Thus far, however, no automated tools were available that could
determine the impact of conceptual changes. We have introduced
a conceptual change impact analysis (CCIA) and applied it tothe
standardized and the proposed versions of iterator concepts. The
analysis shows that the two iterator hierarchies are neither forward-
nor backward-compatible and lists the parts of the specification that
cause incompatibility. Its results can help library designers to avoid
unintended effects of a change and, in general, provides a base for
assessing its impact.

At present, the CCIA is still a prototype. Our plans for the immedi-
ate future include increasing the accuracy of the analysis by adding
a third pass, which detects whether the deletion or additionof a
requirement in fact introduces or eliminates the requirement com-
pletelyor just changes its multiplicity (i.e., the number of ways in
which it reaches a type parameter). The additional pass is needed
when changes are small, e.g., in incremental concept development.
It was not necessary in the study of iterator concepts, wherethe
changes are so extensive that no relation remains unchanged.

In the more distant future, we want to investigate how the gener-
icity of the analysis itself can be increased. Its usabilitycould be
significantly improved if we could identify (abstract) primitives that
underlie conceptual change impact analysis. Instead of hard-wiring
the investigation of compatibility, as we currently do, we could or-
ganize these primitives as basic building blocks and allow users to
combine them according to the change impact of their interest. Yet,
we need to gain much more experience with conceptual change im-
pact, before we can try identifying such primitives.

At the implementation level, we hope to integrate the analysis with
a C++ compiler, to automate the process of reading in conceptual
specifications. There is work underway elsewhere to supportC++
programs that are extended by concepts (e.g., [25, 28]). Such sup-
port provided, our users can be spared the tedious and error-prone
manual encoding that is currently necessary.

Acknowledgments

We thank the anonymous reviewers for their thorough comments
and suggestions, which were essential for improving the presenta-
tion of this paper. We also thank the authors of the Boost Graph
Library (BGL), which saved us substantial implementation work.
Douglas Gregor provided input for the necessary mapping from the
semi-formal specifications in the C++ standard to a machine-usable
format.

73

9 References

[1] The Boost initiative for free peer-reviewed portable C++
source libraries, http://www.boost.org.

[2] Conceptual change impact analysis, http://sms.cs.
chalmers.se/index.php?title=CCIA.

[3] C++ Standard Library issue 299: Incorrect return types
for iterator dereference, http://www.open-std.org/jtc1/
sc22/wg21/docs/lwg-active.html#299.

[4] C++ Standard Library issue 96: Vector<bool> is not a
container, http://www.open-std.org/jtc1/sc22/wg21/
docs/lwg-active.html#96.

[5] Federal Aviation Administration,N8110-85. Guidelines for
the oversight of software change impact analyses used to clas-
sify software changes as major or minor.

[6] ANSI-ISO-IEC, C++ standard, ISO/IEC 14882:2003(E),
ANSI standards for information technology ed., October
2003.

[7] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and
E. Merlo,Recovering traceability links between code and doc-
umentation, IEEE Trans. Softw. Eng.28 (2002), no. 10, 970–
983.

[8] S. A. Bohner and R. S. Arnold,Software change impact anal-
ysis, Wiley-IEEE, 1996.

[9] S. Horwitz and T. Reps,The use of program dependence
graphs in software engineering, Proc. of the 14th Internat.
Conf. on Softw. Eng., 1992, pp. 392–411.

[10] ISO/IEC JTC1/SC22/WG21 - C++, C++ standard draft,
n1804=05-0064, ANSI standards for information technology
ed., October 2003.

[11] D. Kapur, D.Musser, and A.Stepanov,Tecton: A language for
manipulating generic objects, Proc. of a Workshop on Progr.
Specification, LNCS, vol. 134, Springer, 1981, pp. 402–414.

[12] D. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima, and
C. Chen,Change impact identification in object oriented soft-
ware maintenance, Proc. of the Internat. Conf. on Softw.
Maintenance (ICSM), 1994, pp. 202–211.

[13] L. Lee, J. Siek, and A. Lumsdaine,The generic graph com-
ponent library, Proc. of the ACM Conf. on Object-Oriented
Programming, Systems, Languages & Applications, vol. 34,
1999, pp. 399–414.

[14] D. Musser, G. Derge, and A. Saini,STL tutorial and reference
guide. C++ programming with the Standard Template Library,
2nd ed., Addison Wesley, 2001.

[15] J. O’Neal, Analyzing the impact of changing requirements,
Proc. of the Internat. Conf. on Softw. Maintenance (ICSM),
2001, pp. 190–198.

[16] A. Orso, T. Apiwattanapong, and M. Harrold,Leveraging field
data for impact analysis and regression testing, Proc. of the
9th Europ. Softw. Eng. Conf. & 11th ACM SIGSOFT Inter-
nat. Symp. Foundations of Softw. Eng., 2003, pp. 128–137.

[17] V. Rajlich, A model for change propagation based on graph
rewriting, Proc. of the Internat. Conf. on Softw. Maintenance
(ICSM), 1997, pp. 84–91.

[18] G. Rothermel and M. J. Harrold,A safe, efficient regression
test selection technique, ACM Trans. on Softw. Eng. and
Methodology6 (1997), no. 2, 173–210.

[19] B. Ryder and F. Tip,Change impact analysis for object-
oriented programs, Proc. of the 2001 ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering, 2001, pp. 46–53.

[20] J. Siek, Improved iterator categories and requirements,
Tech. Report J16/01-0011 = WG21 N1297, ISO/IEC
JTC1/SC22/WG21 - C++, March 2001.

[21] J. Siek, D. Abrahams, and T. Witt,New iterator concepts,
Tech. Report N1477=03-0060, ISO/IEC JTC1/SC22/WG21 -
C++, April 2003.

[22] , New iterator concepts, Tech. Report N1531=03-
0114, ISO/IEC JTC1/SC22/WG21 - C++, September 2003.

[23] , New iterator concepts, Tech. Report N1550=03-
0133, ISO/IEC JTC1/SC22/WG21 - C++, October 2003.

[24] , New iterator concepts, Tech. Report N1640=04-
0080, ISO/IEC JTC1/SC22/WG21 - C++, April 2004.

[25] J. Siek, D.Gregor, R. Garcia, J. Willcock, J. Järvi,
and A. Lumsdaine,Concepts for C++ 0x, Tech. Report
N1758=05-0018, ISO/IEC JTC1/SC22/WG21 - C++, January
2005.

[26] J. Siek and A. Lumsdaine,The Matrix Template Library: A
Generic Programming Approach to High Performance Nu-
merical Linear Algebra, Internat. Symp. on Computing in
Object-Oriented Parallel Environments, 1998, pp. 59–70.

[27] A. Stepanov and M. Lee,The Standard Template Library,
Tech. Report HPL-95-11, Hewlett Packard, November 1995.

[28] B. Stroustrup and G. Dos Reis,A concept design (rev.1), Tech.
Report N1782=05-0042(rev.1), ISO/IEC JTC1/SC22/WG21 -
C++, April 2005.

[29] H. Sutter, vector〈bool〉 is nonconforming, and forces opti-
mization choice, Tech. Report J16/99-0008 = WG21 N1185,
ISO/IEC JTC1/SC22/WG21 - C++, February 1999.

[30] R. Turver and M. Munro,An early impact analysis technique
for software maintenance, Journal of Software Maintenance6
(1994), no. 1, 35–52.

[31] M. Weiser,Program slicing, IEEE Transactions on Software
Engineering10 (1984), 352–357.

74

Metadata-Driven Library Design

Antonio Cisternino
Dipartimento di Informatica, Università di Pisa,
L.go Bruno Pontecorvo 3, I-56127 Pisa, Italy,

cisterni@di.unipi.it

Walter Cazzola
Department of Informatics and Communication,

Università degli Studi di Milano,
Via Comelico 39/41, Milano, Italy.

cazzola@dico.unimi.it

Diego Colombo
IMT - Institutions, Markets, Technologies

Lucca Institute for Advanced Studies
Via San Micheletto, 3

55100 Lucca, Italy

Abstract

Library development has greatly benefited by the wide adoption of
virtual machines like Java and Microsoft .NET. Reflection services
and first class dynamic loading have contributed to this trend. Mi-
crosoft introduced the notion of custom annotation, which is a way
for the programmer to define custom meta-data stored along reflec-
tion meta-data within the executable file. Recently also Java has
introduced an equivalent notion into the virtual machine. Custom
annotations allow the programmer to give hints to librariesabout
his intention without having to introduce semantics dependencies
within the program; on the other hand these annotations are read
at run-time introducing a certain amount of overhead. The aim of
this paper is to investigate the impact of this new feature onlibrary
design, focusing both on expressivity and performance issues.

1 Introduction

Reflection and dynamic loading are becoming essential elements
of modern programs. Their usefulness is testified, for example, by
the JDBC architecture that shows how to implement a driver based
architecture exploiting the Java dynamic loading.

Although reflection can be used to inspect the structure of types,
to access fields and even to invoke methods dynamically, the con-
cept of tagging has been anticipated as an interesting application.
Consider for instance the Java serialization architecture: the pro-
grammer can declare the instances of a serializable class simply
by implementing theSerializable interface, which in fact is an
empty interface. Thus two types that differ only for the implemen-
tation of theSerializable interface are indistinguishable from
the execution standpoint. Besides, the serialization of the instances
of non-serializable types will not be allowed by the serialization
support. Java serialization taught us that the meta-data stored with
the code can be used for other purposes than mere execution. Other
programs may rely on the reflective abilities of inspecting the com-
piled types and act differently depending on what they have found.

Although widely used by Java programs, the idea of providingex-
plicit meta-data support for annotation has been introduced by Mi-
crosoft in the Common Language Runtime (CLR). The virtual ex-
ecution environment is part of the CLI standard [Mil03][ECM].
More recently also Java introduced annotations as a mean of storing
custom data inside Java classes [Java]. There are also proposals to

add extensible reflection to C++ language [AC02].

Custom annotations have shown to be useful because they provide
a channel that library-users and library-developers may use to com-
municate. A library may require that the user puts annotations on
top of classes and methods in order to instruct the library onhow to
use it.

Unfortunately the availability of this new mechanism increases the
number of possible choices a library developer has for modeling
the abstractions to be provided to the final user of its library. The
choice of using custom annotations instead of more traditional pro-
gramming abstractions should be subjected to consideration about
expressiveness and performance issues.

The paper is organized as follows: section 2 introduces custom an-
notations; section 3 is devoted to discuss how annotations have been
used so far in real applications; performance considerations are pre-
sented in section 4; section 5 presents conclusions. As a final re-
mark, throughout the rest of this paper we will also refercustom
annotationsas custom attributes and we will use the C# notation
inside the examples.

2 Custom Attributes

A custom attributeis a piece of information attached by the pro-
grammer to a portion of a program. In the model implemented
both in Java and .NET attributes can be attached only to thoseel-
ements accessible through the reflection API, such as assemblies,
types (delegates, value types, and classes), fields, properties, and
methods; however there has been a proposal of extending the anno-
tation model to code blocks in [AC02].

In .NET custom attributes are represented by instances of classes
that inherit from the system classAttribute. Java exposes anno-
tations as instances of an interface.

A custom attribute is defined by specifying a set of values andthe
type of the attribute; all the values used to create it must becom-
putable at compile time. The following is an example of annotations
in C#:

[MyAnnotation("par", Property="val")]publi

lass MyClass {..}

75

The definition of MyAnnotation attribute can be the following:
lass MyAnnotationAttribute : Attribute {
MyAnnotationAttribute(string par) {...}publi
 string Property;

}

Parameters required to instantiate custom annotations arestored in-
side the binary file, along with the rest of reflection meta-data, so
that they can be retrieved at run-time. This data isignoredby the
execution environment unless explicitly accessed throughthe re-
flection API. For instance, let m be an instance ofMethodInfo

class (a reflective descriptor of a method), in C# we can retrieve the
custom attributes associated with the method as follows:

Attribute[] attr = m.GetCustomAttributes();

The crucial idea behind the custom annotation consists of shifting
up data about the code into the executable and to be availableat
run-time. Custom annotations are interpreted by programs and are
used for program transformation.

A stereotypical example, from Microsoft .NET, of custom attributes
usage is the support for implementing web services by means of
custom attributes.WebMethod attribute is used to label methods
that should be exposed as web services. A minimal web service
written in C# that computes the sum of two integers is the follow-
ing:publi

lass HelloWorldWS {

[WebMethod]publi
 int add(int i, int j) {return i+j;}
}

Once compiled, theHelloWorldWS class does not provide any web
services interface. A different program - actually part of the Internet
Information Server - is responsible for looking up reflection infor-
mation within assemblies and generating a SOAP/WSDL interface
to the method add over HTTP.

The essence of annotations is that information is stored together
with the code so that some other meta-program will need only the
executable file to access the information. Although this mayseem
to be a little change with respect to configuration files shipped with
the executable program, it makes all the difference. With annota-
tions the programmer can decorate the program, without having to
define bindings between types and custom information. Moreover
configuration files are separated from the executable, leading to a
weaker link between the code and its configuration. In the past we
have dearly paid the separation of the meta-data from the data, as
it is still witnessed by the COM [Rog97] architecture in Windows,
where meta-data are stored inside the disliked system registry.

To better appreciate the effectiveness of custom annotations ver-
sus the use of external configuration files it is worth to briefly de-
scribe the Java Web Service development pack [Javb], currently
based on Java 1.4 (the Java version prior to custom annotations).
With this library the programmer should define several XML con-
figuration files to control the module responsible for generating
SOAP/WSDL. For instance the interface of the Web service is de-
fined with an XML document similar to the following:

<?xml version="1.0" en
oding="UTF-8"?>
<
onfigurationxmlns="http://java.sun.com/xml/ns/jax-rpc/ri/config">
<servi
ename="MyHelloService"targetNamespa
e="urn:Foo"typeNamespa
e="urn:Foo"pa
kageName="HWS">

<interfa
e name="HWS.HelloWSIF"/>
</servi
e>

</
onfiguration>
Despite its verbosity, to annotate theHWS.HelloWSIF interface as
a web service (i.e., all the methods of the interface should be con-
sidered operations of the service) is the only purpose of thefile.

3 Using annotations

Libraries were originally conceived as collections of common-use
routines that programmers can import within their programs. To-
day libraries have become tangled set of programming abstractions
(usually in the form of classes) modeling some application domain.
To use a library it is required to understand its lingo and howthe
domain values and operations fit together.

Often libraries are used as a way to extend the programming lan-
guage with new features (this practice originated with C where even
the basic I/O was provided in the form of a library); in a sensethey
contribute to define a language within the language, designed for a
given application domain.

In this section we discuss possible uses of custom annotations to
support the definition of library interfaces.

3.1 General considerations

Custom attributes allow tagging programming elements; they differ
from inheritance in two ways:

1. annotations are parametric, inheritance no (unless someform
of generics is taken into account, and even then it is possible
only if specialization is available);

2. unlike inheritance that imposes a small amount, though not
null, of overhead at run-time, annotations are passive unless
explicitly read

Another important aspect of annotations is that they are orthogonal
to other relations; therefore they are suitable for introducing new
relations among types of a programming language. Attributes are
user-defined, thus there is not a predefined set of them, and a library
may introduce as many of them as required.

In the area of domain specific languages custom attributes are use-
ful to define the traits of types [CE00]. Traits are used to configure
a generic library so that the amount of information is enoughto
specialize it to some particular application. In the context of gen-
erative programming traits are usually processed at compile time,
along with program specialization. At the moment custom annota-
tions are processed at run-time, introducing possible overheads that
could be in principle avoided. We will discuss further this issue in
the next section.

76

Custom annotation cannot refer directly objects that will be avail-
able at run-time. This is required because they should be processed
at compile time, in a different context of the compiler.

3.2 Serialization

Serialization is the process of writing a structured objectin a serial
stream. As we pointed out in the introduction serializationorigi-
nated the idea of using interfaces for tagging classes in Java.

With custom attributes it is possible to go further and control the
whole process of serialization of instances of a given class. Let us
consider the following example:

[XmlRoot("NewGroupName"), XmlType("NewTypeName")]publi

lass Group{
[XmlArrayItem("MemberName")]publi
 Employee[] Employees;

}

In this case the class Group has been annotated to indicate how its
instances should be serialized. The root element will be named as
indicated, the same will happen for XML type name that will be
used within the associated XSD schema. More interesting is the
annotation over the Employees field, which indicates that inthe
serialized array only theMemberName fields ofEmployee instances
must be serialized. Thus in the serialized structure we willonly
partially serialize the associated employees.

3.3 Indigo and Web Services

We already discussed in the previous section how attributescan be
used for defining Web services. A class defines a Web service, and
annotated methods indicate the methods that should be exposed as
operations.

The upcoming library codenamed Indigo [Win] (now dubbed as
Windows Communication Framework) for supporting distributed
computations based on web services standards heavily rely upon
custom annotations. The library revolves around the notionof data
contractandservice contract. As we might guess from the names,
the first refer to the structure of the data as it is seen from outside of
the application, the second to the definition of published operations.

Here is a simple example of data contract:

[DataContract]publi

lass Person {
[DataMember]publi
 string fullName;
[DataMember]private int age;private string mailingAddress;private string telephoneNumberValue;
[DataMember]publi
 string TelephoneNumber {
get { return telephoneNumberValue; }
set { telephoneNumberValue = value; }

}
}

The traditional approach to marshalling in frameworks like
CORBA [COR], Java RMI [Gro01], and .NET remoting [MNW02],

is to define a type so that its serialized form coincides with the mes-
sage to be sent on the network in inter-process communications; in
this way we let the run-time take care for us of the communication.

Using custom attributes Indigo decouples the data structure from
its serialized form required for network communications. This is
possible because, as we already said, custom attributes defines an
orthogonal dimension to that of the type system.

In the example above only the members labeledDataMember will
be serialized in communications (even if they are private inside the
process!). The same approach is used for defining data contracts:

[ServiceContract]publi
 interfa
e IOne {
[OperationContract(IsOneWay=true)]void A();

}

Service contract provide information about how methods should be
exposed to network users of the service. Annotations allow us to
provide additional information on the behavior of the particular op-
eration, in this case the fact that the operation will not return any
value so that the client can close the connection as soon as possible.
A similar approach has been taken by Robotics4.NET [CCEP05],
a software library supporting the development of control software
for robotics systems. In this case annotations are used to define
incoming and outcoming messages from a sort of agent, calledrob-
let. Custom annotations are used by the framework to implement
the communication infrastructure among the roblets and thecontrol
software of the system. The following is an example of such roblet:namespa
e HeartBeat {publi

lass Beat : RobletMessage {publi
 long tick = DateTime.Now.Ticks;

}

[OutputMessage(typeof(Beat))]publi

lass HeartBeatRoblet : Roblet {publi
 HeartBeatRoblet() : base("HB") {}prote
ted override void Run() {
SendState(new Beat());

}
}

}

TheSendState method is responsible for taking care of message
dispatching, and it its behavior is controlled by the customannota-
tions indicating friendship among agents, input and outputmessage
types.

3.4 Relational Interface to Databases

In [AC02] it is discussed how to extend C++ with reflection support
by means of template meta-programming techniques. The proposed
reflection system provides support for custom meta-data.

In the paper it is discussed how a library for building searchengines
can benefit from the declarative power of custom attributes.In this
case attributes drive storage information of the objects:

77

lass DocInfo {
har
onst* name;
har
onst* title;int date;

META(DocInfo,
(FIELD(name, (MaxLength(256),

IndexType(Index::primary))),
FIELD(title, MaxLength(2048)),
FIELD(date, IndexType(Index::key)))

);
};

In a way similar to C# attributes are objects stored within the meta-
class. In this example we useMaxLength andIndexType attributes
to control how the search engine library must store and indexob-
jects on the secondary storage.

3.5 Code Annotations

Assuming custom annotations capable of annotating portions of
code as it is done in [a]C# [CCC05], an extension to the C# lan-
guage, we can use them for more finer grain tasks.

Using this kind of annotations it is possible to annotate a code with
hints on about how to produce the concurrent version of it:publi
 void m() {

[Parallel("Begin of a parallel block")] {
Console.WriteLine("Main thread code");
[Process("First process")]{ /∗ Computation here∗/ }
[Process]{ /∗ Computation here∗/ }

}
Console.WriteLine("Here is sequential");

}

In this case we rely on annotations to markParallel a block of
code. Inside we define code blocks annotates asProcess that can
run in parallel.

3.6 Attribute Usage

Microsoft .NET defines a set of “meta-attributes” that can beused
as annotation when defining an attribute class. These annotations
are used to possibly constraint the attribute usage. The following
example defines an attribute that can be used only once and only on
classes:

[AttributeUsage(AttributeTargets.Class,
AllowMultiple=false)]
lass ClassTgtAttribute : Attribute {}

In a sense, the ability of specifying that an attribute can beused only
on classes or methods, if it is inherited or not, provides a means for
specifying a sort of a customizable syntax for custom attributes.

3.7 Designer Environments

Microsoft Visual Studio [Mic] designer is capable of loading arbi-
trary components during the design process of user interfaces. At
design time components are configured by specifying a subsetof
properties that the component should have at run-time.

Microsoft .NET controls can indicate to the designer which proper-
ties can be configured at design time by means of custom attributes.
Default values of design-time properties are also specifiedthrough
custom attributes.

The designer is able to display a preview of the component while
designing an interface. A custom attribute specifies which class is
responsible for generating the preview of a component. The de-
signer, however, should inherit from a specific class in order to be
eligible for its role.

Java designer also relies on reflection information in orderto load
components into the designer. However, in this case a namingcon-
vention is used to determine properties so be shown inside the de-
signer. The naming conventions used by Java are defined by the
Java Beans specifications.

3.8 Final Considerations

In this section we presented several applications of customat-
tributes. We believe that many others are possible, making extensi-
ble meta-data an important tool in the library-designer toolbox.

In particular we believe that the declarative aspect of the approach
allow library developers defining interfaces both operational and
declarative.

Custom attributes have almost no drawbacks: they allow defining
arbitrary relations among data types, are distributed withexecuta-
bles, and always accessible through the reflection API. However
there is a noticeable exception: there is the risk of a possible over-
head, due to the facet that meta-data interpretation is often per-
formed at run-time. In the next section we will discuss this aspect
of the problem.

4 About performance

Performance is always important, and custom attributes should not
impose a significant overhead over a computation in order to be
really used.

At a first glance it might be evident that meta-data can be retrieved
only at run-time through reflection. This implies that, if attributes
are used to specify traits of a library, we must postpone computa-
tions that could be done at compile time, at run-time.

This is true for the examples shown in the previous section. How-
ever it is not true in general: meta-programs can be run before the
so-call “run-time”, though they run after the compiler. It is the case
of several tools that manipulates binaries available for the various
virtual machines.

Nevertheless, when we are interested in using custom attributes di-
rectly at run-time, we must consider that the time spent for reading
meta-data is not zero. It is however possible to drown this over-
head into the overall computations costs: for instance, theMicrosoft
XML serializer, for instance, dynamically generates a class for each
type it serializes, and annotations are read during this generation
process. After this generation phase serialization takes place with-
out any more accesses to custom meta-data.

78

5 Conclusions

In this paper we have discussed how custom annotations may affect
the design of libraries. The main impact of the mechanism is at
the level of library interface; however it also influences the internal
design of the library.

Custom annotations provide a mean for library users to declare their
intentions, and for library developers to better adapt to different
uses of the library. If used in their simplest form annotations require
to be processed at run-time. The overhead imposed for accessing
them is in general not significant, though it is possible to get rid of
it by executing a meta-program responsible for processing annota-
tions before that the program is executed.

We believe that custom annotations will play a significant role in
the design of libraries in the next years, and they will be added to
other programming systems that still lacks of this kind of support.

6 References

[AC02] G. Attardi and A. Cisternino,Self reflection for adap-
tive programming, Proceedings of Generative Pro-
gramming and Component Engineering Conference
(GPCE), LNCS 2487 (2002), 50–65.

[CCC05] Walter Cazzola, Antonio Cisternino, and Diego
Colombo, Freely Annotating C#, Journal of Object
Technology4 (2005), no. 10, 31–48.

[CCEP05] A. Cisternino, D. Colombo, G. Ennas, and D. Picciaia,
Robotics4.NET: Software body for controlling robots,
IEE Proceedings Software152:5 (2005), 215–222.

[CE00] K. Czarneki and U.W. Eisenacker,Generative pro-
gramming - methods, tools and applications, Addison-
Wesley, 2000.

[COR] Corba web site, available at http://www.corba.org/, Ac-
cessed: 20/3/2006.

[ECM] Ecma 335, common language infrastructure (cli),
available at http://www.ecma.ch/ecma1/STAND/ecma-
335.htm, Accessed: 20/3/2006.

[Gro01] W. Grosso,Java rmi, O’Reilly, 2001.

[Java] Java web site, available at http://java.sun.com/, Ac-
cessed: 20/3/2006.

[Javb] Java web service development
pack web site, available at
http://java.sun.com/webservices/reference/index.html,
Accessed: 20/3/2006.

[Mic] Microsoft visual studio web site, available at
http://msdn.microsoft.com/vstudio/, Accessed:
20/3/2006.

[Mil03] J. Miller, Common language infrastructure annotated
standard, Addison-Wesley, 2003.

[MNW02] S. McLean, J. Naftel, and K. Williams,Microsoft .net
remoting, Microsoft Press, 2002.

[Rog97] D. Rogerson,Inside com, Microsoft Press, 1997.

[Win] Windows sdk web site, available at
http://windowssdk.msdn.microsoft.com/library/,
Accessed: 20/3/2006.

79

Framework design using inner classes -
Can languages cope?

Kasper Østerbye and Thomas Quistgaard
IT University of Copenhagen

Rued Langgaardsvej 7, 2300 Copenhagen, Denmark
kasper@itu.dk, tquistgaard@itu.dk

ABSTRACT
Inner classes have been part of the Java specification since ver-
sion 1.1, and are an integral part of the Beta language. In Java
they have primarily been used in connection with event handling
in the user interface libraries. This paper investigates inner classes
as the cornerstone in the architecture for the layout part of a GUI
framework, and how the two languages support this architecture.
The difference in support in the two languages is shown to have
clear impact on the usability of the framework for application
programmers. While Java has come a long way, it turns out that
three obstacles need to be removed to fully support the architec-
ture. Of these, it should be straight forward to address two of
them in Java. The third lies in the realm of aspect oriented pro-
gramming. The proposed architecture is itself interesting, as it
provides an insight into larger-scale use of inner classes, and pro-
vides a compiler supported idiom for the implementation of the
composite design pattern.

1. BACKGROUND
In object oriented programming languages which support inner
classes, e.g. Simula [Dahl et al., 1968], Beta [Madsen et al.,
1993] and Java [Gosling et al., 2005], we have come across an
interesting implementation idiom which relates to the composite
pattern [Gamma et. al. 1995]. The design is that the lexical nest-
ing mirrors the composition of the objects. A simple example in
Java is:

class Menu{
 private String name;
 private List<Item> items = new ArrayList<Item>();
 public Menu(String name){
 this.name = name;
 }

 protected abstract class Item{
 private String name;
 public Item(String name){
 this.name = name;
 items.add(this);
 }
 abstract void action();
 }
}

The important part is that the class Menu has a list of Items, and each
Item adds itself to the menu when created. The usage of generic collec-
tions does not play any role in the discussion. The class Item is declared
protected, so it can only be used in subclasses of Menu.

The declaration of enables the following client code:

Menu editMenu = new Menu(“Edit”){
 Item copy = new Item(“Copy”){ void action(){…} };
 Item cut = new Item(“Cut”) { void action(){…} };
 Item paste = new Item(“Paste”) { void action(){…} };
}
Menu fileMenu = new Menu(“File”){
 Item quit = new Item(“Quit”) { void action(){…} };
 …
}

The implementation uses anonymous inner classes as a concise imple-
mentation of the singleton. In addition, lexical scoping avoids parsing a
menu as parameter to items when they are created.

The idiom enables a somewhat declarative style, where the physical
structure of the menu is mirrored in the program layout itself. Other ex-
amples of this structure are the relationship between rule-set and indi-
vidual rules, where the rules can be defined inside their rule-set; or the
hierarchical structuring of a GUI, to which we will return. In Beta, we
have also applied the idiom in the area of process composition
[Østerbye & Kreutzer, 1999].

In general, there are a number of qualities which one would like a
framework to have:

• It should be simple to use for the application programmer

• Misuse of its constructs should be captured at compile time

• Its application should be concise

• The framework should be extensible

• The underlying implementation should perform adequately –
that is, should not constitute a bottleneck in the application

Also, it is important to realize that a framework is a generalization over
a set of applications. There are therefore (interesting) applications that
are covered and other that are not covered by the framework.

Compared to the above qualities, the simple menu illustrates some im-
portant points:

• Simplicity. The application programmer need not have an ex-
plicit set of statements which associates items to menus. The
menu structure is manifest in the program structure.

• Compile-time checks. Attempting to use Items outside the
scope of a Menu will not work, class Item has been declared
protected, and can therefore only be seen in subclasses of
Menu. The compiler checks this (but will give un-informing
error-messages in case of violations).

• Conciseness. There is not much extra information ex-
cept the definition of the hierarchical structure between
Menu and Item. There is some redundancy (Item and
item name repeated twice), which we will return to.

• Lack of flexibility. These qualities have been obtained
at the cost of not being able to dynamically change
which menu a given item belongs to.

In the remainder of this paper this idiom will be further elabo-
rated. The next section introduces the framework we have devel-
oped to investigate the idea. The description highlights the inner
class idiom, and the problems we have encountered in implement-
ing the idiom in Java. Then we contrast some of the problems en-
countered in the Java solutions with similar (but less problematic)
solutions in Beta. We end with a summary of our findings.

2. HIERARCHICAL GUI LIBRARY (HGL)
Before examining the differences between the languages, a
slightly more complex example is needed. As part of his master’s
thesis, Thomas Quistgaard [Quistgaard, 2005] designed and im-
plemented a hierarchical user interface framework. The goal was
to apply the above inner class idiom for a full scale framework to
achieve a simpler to use GUI framework than say Swing, which is
notorious for its complexity.

The design is based on a few overall guiding principles:

a) The program structure should mirror the hierarchical
structure of the GUI.

b) The components are added to their enclosing container
in the order they are declared (Using the same idiom as
with the menu).

c) The physical layout is declared using annotation types,
to provide a clear separation between hierarchical struc-
ture and physical layout, and to provide a path for later
tool manipulation of physical layout.

To explain the design, a simple example will be used.

The above Frame (top level window) has to its left a text field in
which one can enter a search string. All persons that contain the
string in their name are shown in the list below. Selecting a per-
son brings up the underlying data in the right part for examination
or modification. The above GUI is defined in HGL as shown be-
low.

This example illustrates the three design principles. Every graphi-
cal object which appears inside the frame is declared as member
fields of the anonymous personManager Frame. Anonymous inner
classes give a syntactic structure which enables the hierarchical

structure to follow the program structure. Inside the frame, a panel is
declared, inside which a text field and a list are declared.

The components are added in the order they are declared. Inside list-
panel, a TextField, and then a List are declared. These are added to the
panel in the order of declaration.

Frame personManager = new Frame("Person Manager") {

 @Vertical
 Panel listpanel = new Panel() {
 @Width(150)
 TextField searchtextfield = new TextField();
 @Width(150) @Height(300)
 List list = new List(); // GUI list, not a collection library List
 };

 @Vertical @Padding(0)
 Panel infopanel = new Panel() {

 @Horizontal
 Panel namepanel = new Panel() {
 @Width(100)
 Label namelabel = new Label("Name:");
 @Width(200)
 TextField nametextfield = new TextField();
 };

 @Horizontal
 Panel addresspanel = new Panel() {
 @Width(100)
 Label addresslabel = new Label("Address:");
 @Width(200)
 TextField addresstextfield = new TextField();
 };

 @Horizontal @Hlock(false)
 Panel phonepanel = new Panel() {
 @Width(100)
 Label phonelabel = new Label("Phone:");
 @Width(200)
 TextField phonetextfield = new TextField();
 };

 @Horizontal @Hlock(false)
 Panel addpanel = new Panel() {
 Button removebutton = new Button("Remove");
 Button addbutton = new Button("Add");
 };
 };// end infoPanel
}; // end personManager

Frames and Panels are containers that contain other components, includ-
ing other Panels. Layout is defined using annotations. Annotations are
user defined metadata. Syntactically, annotations are located as modifi-
ers, in front of the element they annotate. Annotations are accessed pro-
grammatically through reflection. @Horizontal is a user defined annota-
tion, which is used to specify that the layout in the panel should be hori-
zontal instead of the default vertical. Annotations can include simple
values as parameter. @Padding indicates the space between a component
and the previous component in the same container (or the border if it is
the first). Hlock and Vlock indicate resizing behaviour.

2.1. Addressing components
The above code does not specify behaviour, only layout. There are two
kinds of behaviour which is interesting in connection with GUI frame-
works: tying the GUI to the application data and business logic, and

«interface»
Component

«interface»
Container

Container
Implementation

TextField Label

Panel

Frame

Component
Implementation

(our focus) ensuring graphical consistency. If we select “Christina
Olsen” and modify her name, that name change ought to be re-
flected not only in the application data, but also in the list. Stan-
dard Swing list listeners raise an event if an element is being
added or deleted from a list, but not if an element is changed. A
direct approach would be to let the textChanged event from the
nametextfield directly change the list:

TextField nametextfield = new TextField(){
 void onChange(TextChangeEvent e){
 listpanel.list.changeSelected(this.getText());
 }
}

But this does not work because listpanel is of type Panel, and Panel
does not have a field named list, though the concrete object
listpanel refers to does indeed have this field. To get around this,
we implemented a method get (using reflection), which allow us
to write the above code as:

TextField nametextfield = new TextField(){
 void onChange(TextChangeEvent e){
 ((List)get(“listpanel.list”)).changeSelected(this.getText());
 }
}

Unfortunately, we can no longer check at compile-time that the
path exist and is spelled correctly.

2.2. Compile-time checking
The hierarchical definition of the components plays an important
role in making certain that the compiler can catch as many mis-
takes as possible.

At the outset, the design looks like a composite pattern, with the
components as leafs, and panel and frame as composites. In
Swing, a Frame is a top-level window, and as such:

• No component exists outside a frame

• No frame can be put inside a frame (a frame is not a
component)

The standard composite pattern does not treat the issue of a dedi-
cated root composite. In particular, no compile time checks are
carried out.

To provide a compile time checkable version of the rooted com-
posite pattern, we can again use inner classes as a key:

interface Component{…}
interface Container extends Component{
 List<Component> getComponents();
 void addComponent(Component c);
}
class ContainerImplementation {
 private List<Component> components;
 public Component getComponents(){ return components; }
 public void addComponent(Component c){ components.add(c);}
 protected class TextField implements Component{…}
 protected class Label implements Component{… }
 protected class Panel extends ContainerImplementation
 implements Container{… }
}
public class Frame extends ContainerImplementation{
 …
}

The interface for components has a specialized interface which
represents containers. The container interface specifies that it

consist of components, whereby we obtain the usual recursive compos-
ite pattern.

The class ContainerImplementation contains the necessary infrastructure
to implement the Container interface, but does not declare that it does so
(no implements clause). ContainerImplementation has two subclasses –
Panel and Frame. Frame is a public class, and can be used as expected.
However, it does not implement the Container interface; hence Frames
are not components and cannot be contained in a container. Panel on the
other hand declares that it implement the Container interface. The meth-
ods to do so are inherited from ContainerImplementation.

Leaves (e.g. TextField and Label) and Panel are protected inner classes of
ContainerImplementation, and can therefore only be used in subclasses of
ContainerImplementation, whose only public subclass is Frame. Within a
concrete Frame, e.g. the anonymous class assigned to personManager,
one has access to the protected inner classes TextField, Label and Panel.

The design does not change the way how the application programmer
uses the framework. And it achieves the two compile-time checks we
wanted:

• It is not possible to add a frame inside a frame, as a Frame is
not a component.

• It is not possible to use any components outside a frame, since
they are protected inner classes of ContainerImplementation (al-
lowing components to be used both within Frame and Panel).

We find this idiom for implementation of the composite design pattern a
contribution in its own right. It gives a solution to the notion of a special
root composite, and it can enforce this design at compile-time.

3. IS BETA BETTER?
The original idea for the HGL framework originates in Beta [Lidskjalv,
2002]. In [Quistgaard, 2005] the design is expanded, in particular by
adding declarative layout, and accommodating the design to fit Java. In
this section we will examine a few issues where Beta and Java differ
and how this impact the details of the library.

3.1. Variable declaration syntax
A mundane difference between Java and Beta relates to how variables
are defined. Java declares variables as “Type varName”, whereas Beta
does “varName: Type”.

In Beta, the declaration of editMenu would look like (Though we use
{…} instead of Beta’s (#...#)):

editMenu:@Menu{
 copy :@Item{ action{…} };
 cut:@Item{ action{…} };
 paste:@Item{ action{…} };
}

The Beta syntax is more concise, as we avoid stating Item twice,
both as type name and after new. Furthermore, we do not need to
pass the name of the menu item as parameter, as we are able to
pick out the name through reflection.

A more important consequence of the different way of declaring
the variables surfaces in connection with the addressing of com-
ponents. In Java, it was necessary to use reflection in addressing
components, although we were able to hide this in the get method.
In Beta, the type of the corresponding listPanel variable is the ac-
tual type which does have a list field. Hence, in Beta we are able
to avoid reflection in connection with field addressing.

3.2. Reflection
Reflection is typically avoided because of bad performance and
because it postpones checks to runtime. In the concrete design of
HGL, event handling was not done as described earlier. Instead a
mapping between events and handler methods were established
programmatically as:

((List)get(“listPanel.list”)).onSelect(“listElementSelected”);
A series of such statements are executed at initialization. The get
method returns a list, and this list is told what method to execute
when an element is selected.

Because of reflection, the spelling error “listPanel.list” (should be
“listpanel.list”) is first caught at runtime. However, the mistake is
caught at program initialization. Thus, running the program just
once will reveal the error. Efficient run-time structures are con-
structed during initialization, so no execution time is lost in prac-
tical usage.

3.3. Annotation checks at compile time
It would have been compelling to use the new annotation process-
ing tool [APT 5.0] to check that annotations were used correctly,
for instance that the Vertical annotation is only associated with
Panels. However, neither Java reflection nor APT allows us to ac-
cess inner classes; hence we cannot traverse structures of anony-
mous inner classes. So while we basically have all the machinery
in place, a design choice in Java and APT prevents us from doing
compile-time checks in connection with applications of our
framework.

3.4. Object initialization
Java has two ways to provide information when an object is cre-
ated. One can pass parameters to its constructor, and sometimes
one can attach annotations to its declaration. In Beta one cannot
do either one.

So, the best approximation one can do for the layout information
in Beta is something like the following

listPanel:@Panel{ Layout::Horizontal; Padding::{do 0->padding};
 …
}

This syntax specifies that listPanel is a constant which refers to an
object which is a subtype of Panel, where the virtual type Loca-
tion is bound to Horizontal. This corresponds roughly to giving

Horizontal as a type parameter. The method Padding is specialized to
return the value 0.

There are several drawbacks compared to the annotation approach

• Annotations are well suited for tool manipulation.

• The specification of concrete values, like 0 padding becomes
quite clumsy.

But there are a number of drawbacks associated with the annotation ap-
proach we have used as well.

1) One cannot associate annotations with anonymous inner
classes. Hence we have been forced to annotate the fields in-
stead.

2) Annotations need to be manipulated through reflection, which
implies poor performance. In our case, however, it is only
done when the Frame is initialized, not when the GUI is used.

3.5. Framework extension
The complex design makes it hard to add new component types to the
library, as we effectively need to add new definitions inside a package
protected class. The Beta compiler supports a Fragment system. The
fragment system is a way to declare insertion points in classes, and en-
ables libraries of code which, at compile-time, is weaved into these in-
sertion points. A problem in HGL is that one cannot add new protected
component types to the ContainerImplementation class. A Java version of
Beta’s fragment system would allow us to write the Container-
Implementation class as:

class ContainerImplementation {
 private List<Component> components;
 …
 protected class Panel extends ContainerImplementation implements Container{
 … }
 «SLOT ExtraComponents: Declarations»
}

A component, e.g. GanttChart, can be written, specifying that is intended
to be inserted at the ExtraComponents slot. GanttChart is compiled as if it
were lexically located at that slot, with access to all the same lexical in-
formation as the standard components.

To use GanttChart, in your application, you declare it in an insert clause.
Rather than making GantChard available in the global name space, insert
makes GandChart available as if it were inserted into the slot. Hence,
GanttChart cannot be used outside of Frames. On the other hand, it is
readily available to be used as any other components.

It is highly unlikely that such a mechanism should be included in Java.
A similar effect can be obtained using aspect oriented programming.
The idea is to use insertion to place the GanttChart into the
ContainerImplementation as:

aspect MyComponentLibrary {
 protected class ContainerImplementation.GanttChart {…}
}

At present, however, the most widely used aspect compiler for Java,
AspectJ [AspectJ, 5.0] does not support insertion of inner classes, and
aspect oriented programming tends to focus on other issues than inser-
tion. The difference between the slot approach and aspects is discussed
in [Ernst, 2000]. For our needs there is no fundamental difference.

While C# does not support inner classes, its notion of partial classes is
also a solution. If ContainerImplementation were partial, it could extended
it with new components. Partial inner classes have to be worked out in
practice. The slots in Beta can only be used for adding new classes and

methods, not new fields, as that would change the size of objects,
which would prevent separate compilation.

4. SUMMARY
With some tradeoffs, we have been able to implement HGL in
Java. Its design, however, is cleaner in Beta. In particular we have
encountered three major problems in Java:
First, the problem with the type of variables and anonymous inner
classes in Java is a hindrance for our design of HGL. One solu-
tion is to adopt the val type from ML, to state that the type of a
variable should be deduced by type inference. Hence, out listpanel
should be defined as:

final val listpanel = new Panel(){
 …
 List list = new List();
}

This way the type of listpanel could be the anonymous subclass of
Panel which has the field list, so it can be compile-time checked
that listpanel.list is indeed a legal object path.

While it is unknown if such a val construct will make it to Java, a
variation which can solve the problem will be available in next
version of Visual Basic.

Second, the standard java annotation processing tool allows us to
write our own compile-time modules. This facility is intended for
writing code-generators in connection with J2EE. However, it is
tempting to view it as general compiler extension mechanisms,
which allow us to write custom compile-time checks for the usage
of libraries and frameworks. In its present state, however, we can-
not use it for HGL. Nevertheless, a possible example might be the
unit testing framework JUnit [JUnit]. JUnit assumes certain nam-
ing conventions, which are checkable using reflection, and can
also be checked at compile time. We have not investigated this
further. But in our case, neither reflection nor APT allows us to
examine the whole program; in particular anonymous inner
classes can not be traversed.

Thirdly, to make the inner class approach presented here feasible,
it is necessary to solve the problem of adding inner classes to an
existing class. Java needs to be extended with something similar
to partial classes, or AspectJ needs to be able to handle introduc-
tions of inner classes. The notion of MixIn Layers [Smaragdakis
& Batory, 1998] provides another view on how the existing
framework can be refined into a new framework with additional
components. Their solution provides the necessary infrastructure
we ask for, but from our experience with HGL we do not neces-
sarily need all the capabilities of MixIn Layers.

Scala [Odersky et al., 2005] provides the key mechanisms needed
to implement the inner class idiom as well, in particular object
definitions and anonymous inner classes. However, it seems that
Scala has the same problem as Java when it comes to extending
the framework, and it is not clear what mechanisms can be used
to separate logical and physical layout.

Compared to [Hedin & Knudsen, 1999] we are applying some of
the mechanisms from Beta that they describe as providing benefit
for framework design. In relation to their work, the contribution
in this paper has been to apply those guidelines in the context of a
Java based framework, and to report where Java fails in achieving
the goals. However, an important issue for framework design not
mentioned in [Hedin & Knudsen, 1999] is object initialization.

Here Java is superior to Beta, providing both field initializers and anno-
tations.

Of the major object oriented languages, it is only Java that supports in-
ner classes. C# and C++ share a design, in which a class can be defined
inside an other class, but the inner class will not have instances of the
outer class as lexical scope for its objects, hence not even the simple
Menu-Item example will work. Eiffel, Smalltalk and many other lan-
guages do not even allow the simple nesting of C++ and C#.

5. REFERENCES
[APT 5.0] Annotation Processing Tool (apt), part of Java 2 Standard

Edition. http://java.sun.com/j2se/1.5.0/docs/guide/apt/index.html

[AspectJ, 5.0] AspectJ Project. http://eclipse.org/aspectj/. Accessed Oc-
tober 3rd, 2005.

[Dahl et al., 1968] O.J. Dahl, B. Myrhaug, K. Nygaard. SIMULA 67
Common Base Language. Norwegian Computing Center, Oslo, 1968.

[Ernst, 2000] Erik Ernst Syntax based modularization: invasive or not?
in Tarr, P., Bergmans, L., Griss, M. and Ossher, H. (eds.), Workshop
on Advanced Separation of Concerns (OOPSLA’00). Department of
Computer Science, University of Twente, The Netherlands.

[Gamma et. al. 1995] Eirich Gamma, Richard Helm, Ralph Johnson,
John Vlissides. Design Patterns, Elements of Reusable Object-
Oriented Software. Addison Wesley, 1995.

[Gosling et al., 2005] James Gosling, Bill Joy, Guy Steele and Gilad
Bracha. The Java Language Specification (Third Edition). Addison
Wesley 2005.

[Hedin & Knudsen, 1999] Görel Hedin and Jørgen Lindskov Knudsen.
Language Support for Application Framework Design. In Implement-
ing Application Frameworks: Object Oriented Frameworks at Work.
Ed. M.E. Fayad, D.C. Schmith, R.E. Johnson. Wiley 1999.

[JUnit] Unit testing framework for Java. http://www.junit.org/index.htm

[Lidskjalv, 2002] Lidskjalv: User Interface Framework – Tutorial.
Mjølner Informatics Report, MIA 95-30, February 2002.
http://www.daimi.au.dk/~beta/mjolner_system/lidskjalv.html

[Madsen et al., 1993] Ole Lehrman Madsen, Birger Møller-Pedersen,
Kristen Nygaard. Object-Oriented Programming in the Beta Pro-
gramming Language. Addison Wesley 1993.

[Odersky et al., 2005] Martin Odersky, Philippe Altherr, Vincent Cre-
met, Burak Emir, Stéphane Micheloud, Nikolay Mihaylov, Michel
Schinz, Erik Stenman, and Matthias Zenger. The Scala Language
Specification Version 1.0. Accessed from http://scala.epfl.ch/
docu/index.html October 3, 2005.

[Quistgaard, 2005] Thomas Quistgaard. The Hierarchical Graphical
Library. Masters Thesis, IT University of Copenhagen, 2005.
http://hgl.sourceforge.net. (in Danish)

[Smaragdakis & Batory, 1998] Yannis Smaragdakis and Don Batory.
Implementing Layered Designs with Mixin Layers. Proceedings of
ECOOP'98, Brussels, Belgium, July 1998. Lecture Notes in Com-
puter Science 1445, Springer-Verlag.

[Østerbye & Kreutzer, 1999] Kasper Østerbye and Wolfgang Kreutzer.
Synchronization abstraction in the BETA programming language.
Computer Languages 25 (1999) 165-187.

The Diary of a Datum: An Approach to Modeling Runtime
Complexity in Framework-Based Applications

Nick Mitchell
IBM TJ Watson Research Center

19 Skyline Drive
Hawthorne, NY USA

+1 914-784-7715

nickm@us.ibm.com

Gary Sevitsky
IBM TJ Watson Research Center

19 Skyline Drive
Hawthorne, NY USA

+1 914-784-7619

sevitsky@us.ibm.com

Harini Srinivasan
IBM Software Group

Route 100
Somers, NY USA
+1 914-766-1885

harini@us.ibm.com

ABSTRACT
In large-scale framework-based applications, every piece of
information has a complex story to tell about its journey. As it
makes its way through a tangle of reusable frameworks, it may be
transformed from a string, to an Integer, to an integer, and finally
to a date. Over the past several years, our research group has
analyzed dozens of industrial, framework-based applications.
Often, simple functionality requires a seemingly excessive amount
of runtime activity and complexity. We have found it increasingly
difficult to understand behavior, weigh design tradeoffs, and
assess if and how performance problems can be fixed.

Much of this activity revolves around the transformation of
information from one form to another. In this paper we present an
approach to understanding runtime behavior that models activity
as the flow of logical content through a sequence of
transformations. We show how to manually group and filter
activity into a hierarchy of data flow diagrams, to make an
otherwise overwhelming amount of information about a run
manageable. We give a detailed example that illustrates the
approach, and also demonstrates the complexities typically found
in this class of application. We show how structuring behavior
according to transformations allows us to introduce new metrics
of cost and complexity derived from the topology of the diagrams.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – complexity measures

General Terms
Measurement, Performance, Design

Keywords
Dynamic analysis, program understanding, complexity
assessment, performance analysis, design recovery

1. INTRODUCTION
Large-scale applications are being built from increasingly many
reusable frameworks, such as web application servers (that use
SOAP [5], EJB, JSP), portal servers, client platforms (Eclipse),
and industry-specific frameworks. Over the past several years, our
research group has analyzed the performance of dozens of
industrial framework-based applications. In every application we
looked at, an enormous amount of activity was executed to
accomplish simple tasks. This was the case, even after some

tuning effort has been applied. For example, a stock brokerage
benchmark [10] executes 268 method calls and creates 70 new
objects just to move a single date field from SOAP to Java.
Beyond identifying bottlenecks, this paper presents an approach
to making visible the nature of runtime complexity and
inefficiency in these applications.
In our experience, inefficiencies are not typically manifested in a
few hot methods. They are mostly due to a constellation of
transformations. Each transformation takes data produced in one
framework and makes it suitable for another. Problems are less
likely to be caused by poor algorithm choices, than by the
combined design and implementation choices made in disparate
frameworks. In a web-based server application, for example, the
data arrives in one format, is transformed into a Java business
object, and is sent to a browser or another system – e.g. from
SOAP, to an EJB, and finally to XML. Surprisingly, inside each
transformation are often many smaller transformations; inside
these are often yet more transformations, each the result of lower-
level framework coupling. In addition, many steps are often
required to facilitate these transformations. For example, a chain
of lookups may be needed to find the proper SOAP deserializer.
In our benchmark example, moving that date from SOAP to Java
took a total of 58 transformations.
How do we know if 58 transformations is excessive for this
operation? And if so, what could possibly require so many?
Traditional performance tools model runtime behavior in terms of
implementation artifacts, such as methods, packages, and call
paths [1,2,3,7,8,18]. Transformations, however, are implemented
as sequences of method calls, spanning multiple frameworks. In
this paper, we present an approach for understanding and
quantifying behavior in terms of transformations. We believe this
model enables:

 Evaluation of an implementation to understand the nature of
its complexity and costs, and assess whether they are
excessive for what was accomplished.

 Comparison of implementations that accomplish similar
functionality, but use different frameworks or physical data
models.

We model the behavior of a run by structuring it as the flow of
data through transformations. We believe that structuring in terms
that are abstracted from the specifics of any framework will enable
new ways of evaluation and comparison. We briefly show how
new cost and complexity measures can be derived from this

model. Generating a model and computing metrics are currently
manual processes; parts are amenable to automation in the future.
We now describe the approach in more detail.

Structuring Behavior: There often are multiple physical
representations of the same logical content. For example, the
same date may be represented as bytes within a SOAP message,
and later as a Java Date object. Our approach structures runtime
activity as data flow of logical content, as illustrated in Figure 1.
We show the data flow as a hierarchy of data flow diagrams [6,9].
Each edge represents the flow of a physical representation of
some logical content. Each node represents a transformation – a
change in logical content or physical representation of its inputs.
Many types of processing can be viewed as transformations. For
example, a transformation may be a physical change only, like
converting information from bytes to characters or copying it from
one location to another; it may be a lookup of associated
information, such as finding a quote for a stock holding; or it may
be implementing business logic, such as adding a commission to a
stock sale record.
It is infeasible to have a dataflow diagram show an entire run. We
introduce the concept of an analysis scenario that filters the
analysis to show just the production of some specified
information. We show how to group the activity and data of an
analysis scenario into a hierarchy of dataflow diagrams.

Transformation-based Complexity and Cost Measures: We
use the number of transformations as an indicator of the
magnitude of complexity. We introduce metrics that aggregate
based on the topology of the diagrams. For example, 58
transformations to convert one field seems excessive. Knowing
that 36 of these occurred at a diagram depth of three indicates that
the complexity was due to design decisions were made far from
the application code.
We can also aggregate traditional resource costs, such as the
number of instructions executed or objects created, by
transformation. Aggregating in this new way, as opposed to by
method, package, or call path, gives more appropriate metrics of
cost for framework-based applications. Throughout the paper we
give examples showing the benefits of reporting costs by
transformation.
In Section 2 we describe the structuring approach, following the
data flow of logical content through transformations. We also
discuss strategies for grouping and filtering activity, and give a
brief example. In Section 3 we give an in-depth example, that
follows our single date field from a SOAP response into a Java
business object – a seemingly simple operation with surprisingly
complex behavior. In addition to illustrating the approach, this
example illustrates the nature and magnitude of the complexities
found in large-scale framework-based applications. Structuring by
logical data flow also enables new quantitative analyses that can
shed light on the costs and complexity of an implementation. In
Section 4 we show some of these metrics.

2. STRUCTURING APPROACH
We model runtime behavior using data flow. Using the raw data
flow information would give too much, and too low a level of
information to make sense of. In this section we present our
approach to filtering and grouping activity into a hierarchy of data
flow diagrams.

Figure 1 shows a dataflow diagram from a configuration of the
Trade 6 benchmark [10] that acts as a SOAP client.1 The figure
follows the flow of one small piece of information, a field
representing the purchase date of a stock holding, from a web
service response into a field of the Java object that will later be
used for producing HTML. We follow this field because, of all the
fields of a holding, it is the most expensive to process.
Each edge shows the flow of the physical form of some logical
content. In the figure, the same purchase date is shown on three
edges: first as some subset of the bytes in a SOAP response, then
as a Java Calendar (and its subsidiary objects), and finally as a
Java Date. Each node denotes a transformation of that data, and it
groups together invocations of many methods or method
fragments, drawn from multiple frameworks. In Sections 3.3 and
3.4 we discuss in more depth transformations and logical content.
Structuring in this way relates the cost of disparate activity to the
data it produced. Figure 1 shows that the cost of the first
transformation was 268 method calls and 70 new objects, mostly
temporaries.2 All this, just to produce an intermediate (Java
object) form of the purchase date.

2.1 Filtering by Analysis Scenario
The extent of a diagram is defined by an analysis scenario that
consists of the following elements:

 The output – the logical content whose production we follow

 The physical target of that logical content

 The physical sources of input data

 Optional filtering criteria, such as a specific thread, time
interval, or call path

For example, Figure 1 reflects an analysis scenario that follows
the production of a purchase date field; its physical target is the
Java object that will be used for generating HTML; its physical
source is the SOAP message; filtering criteria limit the diagram to
just one response to a servlet request, and to the worker thread
that processes that request. Note how the filtering criteria allow us
to construct a diagram that omits any advance work not specific to
a servlet response, such as initializing the application server.

1 We omit the standard data flow notation for sources and sinks,
and instead represent them as unterminated edges.

2 We used a publicly available application server and JVM. Once
in a steady state, we used ArcFlow [1] and Jinsight [7] to gather
raw information about the run, after JIT optimizations.

Figure 1: A dataflow diagram of how the Trade benchmark
transforms a date, from a SOAP message to a Java object.

Copy to
another

version of
the

business
object

Calendar*
(Java field)

Date*
(Java field)

bytes
(SOAP)

Parse,
set field

in
business
object

Cost:
- 268 calls
- 70 objects

*new objects

2.2 Grouping Into Hierarchical Diagrams
Within an analysis scenario, the activity and data could be
grouped into data flow diagrams in various ways. In this section
we show how we group activity into transformations, to form an
initial hierarchy of data flow diagrams. We then apply an
additional rule that identifies groups of transformations to split
out into additional levels of diagram.
Applications often have logical notions of granularity that cut
across multiple type systems. For example, a stock holding record,
whether represented as substrings of a SOAP message or as a Java
object, may still be thought of as a record. Other common
examples include fields, subfields, and record sets.
We follow the activity and intermediate data leading to the
production of the scenario's output. The top-level diagram shows
this at a single level of granularity, that of the output. Each
transformation groups together all activity required to change
either the logical content or physical representation of its input
data. Section 3 gives more precise definitions of logical and
physical change. Note that some of the inputs to a transformation
will be facilitators, such as schemas or converters. In the diagram
for that transformation, we also include the sequence of
transformations needed to produce these facilitators. Section 3.1
discusses facilitators in more depth.
While one diagram shows data flow at a single level of
granularity, it will also show those transformations that transition
between that granularity and the next lower one. For example, the
transformation that extracts a field from a record will be included
in the diagram of the record.
We form additional levels of diagram to distinguish the parties
responsible for a given cost. We define an architectural unit to be
a set of classes. Given a set of architectural units, a hierarchical
dataflow diagram splits the behavior so that the activity at one
level of diagram is that caused by at most one architectural unit.
The choice of architectural units allows flexibility in assigning
responsibility for the existence of transformations. In our
experience, architectural units do not necessarily align with

package structure. The diagram of Figure 1 shows the field-level
activity that the application initiates. Other field-level activity that
SOAP is responsible for is grouped under the first node. To
analyze the behavior that SOAP causes, we can zoom in, to
explore a subdiagram.

3. THE DIARY OF A DATE
We now explore the structure of the first step of the diagram
shown in Figure 1. This example illustrates how to apply the
structuring approach, and also shows the kinds of complexity that
we have seen in real-world framework-based applications. We
chose a benchmark that has been well-tuned at the application
level to demonstrate the challenges of achieving good
performance in framework-based applications.
We present an additional three levels of diagram. Two are the
result of splitting according to architectural units (SOAP and the
standard Java library), and one according to granularity.

Diagram level 1. Figure 2 shows the field-granularity activity that
SOAP is responsible for, within the first transformation of Figure
1. The purchase date field flows along the middle row of nodes.
Just at this level, the input bytes undergo seven transformations
before exiting as a Calendar field in the Java business object.
The first transformation extracts the bytes representing the
purchase date from the XML text of a SOAP message, and
converts it to a String. The String is passed to a deserializer for
parsing. The SOAP framework allows registration of deserializers
for datatypes that can appear in messages. In the lower left corner
is a sequence of transformations that look up the appropriate
deserializer given the field name.
We highlight as a group the five transformations related to
parsing, to make it easier to see this functional relationship. The
first step takes the String, extracts and parses the time zone and
milliseconds, and copies the remaining characters into a new
String. The reformatted date String is then passed to the
SimpleDateFormat library class for parsing. This is an expensive
step, creating 39 objects (38 of them temporaries). Below, we

Figure 2. Zooming in on the first step of Figure 1 shows how the SOAP framework transforms the purchase date field.

Parse (using SOAP CalendarDeserializer)

parse using
Simple-
Date-

Format

String* Date*

parse time
zone and

millis;
reformat
without
them

Cost:
- 11 calls
- 6 objects

add in
timezone
and millis

Date
extract

value from
SOAP tag

bytes
(SOAP) String*

Cost:
- 30 calls
- 3 objects

get
schema

info

XML and
Java types

BeanPropertyDescriptor

Cost:
- 10 calls
- 0 objects

get de-
serializer

Cost:
- 51 calls
- 5 objects

Deserializer*

build
Calendar

Calendar*
+ 11 arrays*
+ TimeZone*

set time

Cost:
- 7 calls
- 1 object

Cost:
- 15 calls
- 15 objects

Calendar

Cost:
- 95 calls
- 39 objects

Cost:
- 4 calls
- 0 objects

ParsePosition*

TimeZone*
(constant)

SimpleDateFormat
+ Calendar

2 longs
(TZ and millis)

Set business object field via reflection

box into
array

call
invoke()

on
setter

Object[]*

Cost:
- 6 calls
- 1 object

Calendar

*new objects

explore the diagram, to find out why.3 It then returns a new Date
object, and joins that object with the original time zone and
milliseconds.
The Java library has two date classes. A Date object stores the
number of milliseconds since a fixed point in time. A Calendar
stores a date in two different forms, and can convert between
them. One form is the same as in Date; the other is seventeen
integer fields that are useful for operating on dates, such as year,
month, day, hour, or day of the week.
In the top row is an expensive transformation that builds a new
default Calendar from the current time. Our Date object is then
used to set the value of this Calendar again. Finally, that Calendar
becomes the purchase date field of our business object, via a
reflective call to a setter method. Java’s reflection interface
requires the Calendar to first be packaged into an object array.

Diagram level 2. Figure 3 zooms in to show the Java library's
responsibility for the SimpleDateFormat parse transformation.
The String containing the date is input, and each of its six
subfields – year, month, day, hour, minute, and second – is
extracted and parsed individually.

3 It often seems that things named “Simple” are expensive.

The SimpleDateFormat maintains its own Calendar, different from
the one discussed earlier at the SOAP level. Once a subfield of
date has been extracted and parsed into an integer, the
corresponding field of the Calendar is set. After all six subfields
are set, the Calendar converts this field representation into a time
representation. This is then used to create a new Date object.

Diagram level 3. Figure 4 shows the detail of extracting and
parsing a single date subfield, in this case, a year. Even at this
microscopic level, the standard Java library requires six
transformations to convert a few characters in the String (in
“YYYY” representation) into the integer form of the year.
The first five transformations come from the general purpose
DecimalFormat class. It can parse or format any kind of decimal
number. SimpleDateFormat, however, uses it for a special case, to
parse integer months, days, and years. The first, fifth, and sixth
transformations are necessary only because of this overgenerality.
The first transformation looks for a decimal point, an E for
scientific notation, and rewraps the characters.4 Furthermore,
since DecimalFormat.parse() returns either a double or long value,
the fifth transformation is needed to box the return value into an
Object, and the sixth transformation is only necessary to unbox it.

4 It checks fitsIntoLong() on a number representing a month!

Figure 3: Further zooming in on the “parse using SimpleDateFormat” step of Figure 2 shows how the standard Java library's date-
handling code transforms the purchase date field.

extract
and parse
subfield

set field in
Calendarint

String x 6 for
YY,
MM,
 DD,
 ...

Calendar
compute

time

create
Date
from
time

long Date*

Cost:
- 4 calls
- 1 object

Cost:
- 14 calls
- 6 objects

Cost:
- 1 calls
- 0 objects

Cost:
- 0 calls
- 1 object

boolean[]*
*new objects

Figure 4: Zooming into the first step of Figure 3 shows how the standard Java library's number-handling code transforms a
subfield of a purchase date (such as a year, month, or day).

Parse number using DecimalFormat.parse()

Parse long using DigitList.getLong()

extract
digitsString copy digits toString() parse box intValue()Digit-

List
String-
Buffer* String* long Long* int

Cost:
- 11 calls
- 5 objectsCost:

- 4 calls
- 3 objects
- 600 instructions

Cost:
- 1 call
- 0 objects

Parse-
Position*

boolean[]*

*new objects

4. TRANFORMATION-BASED METRICS
Measures of the topology of a data flow diagram can give us some
clues as to the complexity of an implementation. We can derive
various measures from a single level of diagram, such as the total
number of transformations and the maximum path length. For
example, the first top-level step of converting a date to a business
object field in Figure 1 is implemented by a total of ten
transformations at the next level down – a sign that this is not a
simple operation.

Other useful measures of complexity can be derived by looking at
the entire hierarchy of data flow diagrams underlying a given
transformation. These can give a sense of how “far afield” an
implementation has gone from its high-level interface. Our top-
level transformation hides three levels of detail, and takes 58
transformations in total. There are a total of 8 transformations at
the first level of depth, 14 at the second, and 36 at the third. This
breakdown shows us that much of the activity is delegated to a
distant layer.

As we have seen throughout Section 3, structuring activity by
transformations allows us to associate resource costs with
transformations, rather than with program artifacts as is the case in
traditional performance analysis. This has two advantages. First,
it maps costs more closely to operations which may involve
multiple methods or fragments of methods. Second, it enables
comparisons across diverse implementations of the same
functionality.

5. RELATED WORK
Recent work on mining jungloids [12] addresses a similar
problem to ours, but at development time. They observe that, in
framework-based applications, the coding process is difficult, due
to the need to navigate long chains of framework calls.
There are many measures of code complexity and ways to
normalize them, such as function points analysis [13], cyclomatic
complexity [14], and the maintainability index [19]. Our measures
are geared toward evaluating runtime behavior, especially as it
relates to surfacing obstacles to good performance.
Performance understanding tools assign measurements to the
artifacts of a specific application or framework [1,2,3,7,8,11,18].
Some have identified that static classes do not capture the
dynamic behavior of objects [3,11].
There is much work on using data flow diagrams, at design time,
to capture the flow of information through processes at a
conceptual level [6,9]. In contrast, compilers and some tools
analyze the data flow of program variables in source code [17]. In
our work we use the data flow of logical content to structure
runtime artifacts. This also sets us apart from existing
performance tools, which typically organize activity based on
control flow.
Finally, there is much work on recovering the design of complex
applications [4,15].

6. CONCLUSIONS AND DIRECTIONS
That developers make such reuse of frameworks has been a boon
for the development of large-scale applications. The flip side
seems to be complex and poorly-performing programs.
Developers can not make informed design decisions because costs

are hidden from them. Moreover, framework designers can not
predict the usage of their components. They must either design
overly general frameworks, or ones specialized for use cases about
which they can only guess.

We believe that elements of forming diagrams and grouping can
be automated, for example, by using escape analysis, data flow
analysis that combines static and dynamic information, and
clustering based on descriptive labels (e.g. ones that identify data
structures as records or fields) and application/framework
boundaries. Programmers and designers must however remain a
critical part of this process. Automation will also enable
validation of the approach against a larger set of applications.

7. ACKNOWLEDGMENTS
We wish to thank Tim Klinger, Edith Schonberg, and Kavitha
Srinivas for their technical contributions and support of this work.

8. REFERENCES
[1] W. P. Alexander, R. F. Berry, F. E. Levine, and R. J.

Urquhart, A Unifying Approach To Performance Analysis in
the Java Environment, IBM Systems Journal Volume 39
Number 1, 2000.

[2] G. Ammons, J. Choi, M. Gupta, and N. Swamy. Finding and
Removing Performance Bottlenecks in Large Systems.
ECOOP, 2004.

[3] E. Arisholm. Dynamic Coupling Measures for Object-
Oriented Software. Symposium on Software Metrics, 2002.

[4] B. Bellay and H. Gall. An Evaluation of Reverse Engineering
Tool Capabilities. Journal of Software
Maintenance:Research and Practice Volume 10, 1998.

[5] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N.
Mendelsohn, H. F. Nielsen, S. Thatte, and D. Winer. Simple
Object Access Protocol (SOAP) 1.1, W3C Note 08, 2000.

[6] P. Coad and E. Yourdon. Object-Oriented Analysis, 2nd
Edition, Englewood Cliffs, NJ: Prentice-Hall, 1991.

[7] W. De Pauw, N. Mitchell, M. Robillard, G. Sevitsky, and H.
Srinivasan. Drive-by Analysis of Running Programs.
Workshop on Software Visualization, ICSE, 2001.

[8] B. Dufour, K. Driesen, L. J. Hendren, C. Verbrugge.
Dynamic Metrics for Java. OOPSLA 2003: 149-168.

[9] C. Gane and T. Sarson. Structured Systems Analysis.
Englewood Cliffs, NJ.: Prentice-Hall, 1979.

[10] IBM Trade Web Application Benchmark
http://www.ibm.com/software/webservers/appserv/wpbs_do
wnload.html

[11] V. Kuncak, P. Lam, and M. Rinard. Role Analysis. POPL,
2002.

[12] D. Mandelin, L. Xiu, R. Bodik, and D. Kimmelman. Mining
Jungloids: Helping to Navigate the API Jungle. PLDI, 2005.

[13] J. J. Marciniak. ed. Encyclopedia of Software Engineering,
518-524. John Wiley & Sons, 1994.

[14] T. J. McCabe and A. H. Watson. Software Complexity.
Crosstalk, Journal of Defense Software Engineering 7, 12.

[15] T. Richner and S. Ducasse. Using Dynamic Information for
the Iterative Recovery of Collaborations and Roles. ICSM,
2002.

[16] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically Characterizing Large Scale Program Behavior.
ASPLOS, 2002.

[17] F. Tip. A Survey of Program Slicing Techniques. Journal of
Programming Languages, 1995

[18] Robert J. Walker, Gail C. Murphy, Jeffrey Steinbok, and
Martin P. Robillard. Efficient Mapping of Software System
Traces to Architectural Views. In CASCON, 2000.

[19] K. D. Welker and P. W. Oman. Software Maintainability
Metrics Models in Practice. Crosstalk, Journal of Defense
Software Engineering 8, 11: 19–23.

A Model for Software Libraries

John M. Hunt
Clemson University
201 McAdams Hall

Clemson, SC

hunt2@cs.clemson.edu

John D. McGregor
Clemson University
312 McAdams Hall

Clemson, SC

johnmc@cs.clemson.edu

Abstract

Software libraries have long been an integral element of software
development. Recent advances in areas such as software product
lines and extensibility mechanisms have focused renewed attention
on collections, particularly heterogeneous collections,of software
artifacts. The contribution of this paper is to propose a model for
a software library. Our work creates a framework that is abstract
enough to encompass many kinds of software libraries beyondthose
used for the sort of programming constructs normally considered.
This allows quite disparate collections to be understood within the
same framework. Notable to our work is a discussion of the role of
context and deployment to libraries. A comparison of our model to
existing models is provided. A number of different types of libraries
are analyzed to demonstrate the power of our model and to show
how it leads to better understanding of several types of software
collections.

Categories and Subject Descriptors

D.2.2 [Design Tools and Techniques]: Software libraries; D.2.13
[Reusable Software]: Reusable Libraries; D.2.13 [Reusable Soft-
ware]: Domain Engineering; D.2.1 [Re-quirements\ Specifica-
tions]: Methodologies

General Terms

Design, Standardization

Keywords

Modeling

1 Introduction

Software libraries have long been an integral element of software
development. Recent advances in areas such as software product
lines and extensibility mechanisms have focused renewed attention
on collections, particularly heterogeneous collections,of software
artifacts. The contribution of this paper is to propose a model for
a software library, briefly contrast our model to existing models,
and show how it leads to better understanding of several types of
software collections including: Dia Shape Sets, Eclipse plug-ins
and software product line asset bases.

This model creates a framework that is abstract enough to encom-
pass many kinds of software libraries beyond those used for the sort
of programming constructs normally considered as libraries. The

model allows quite disparate collections to be understood within the
same framework. Notable to our work is a discussion of the role of
context and deployment to libraries. A comparison of our model
to existing models will be provided. A number of different types
of libraries are analyzed including Dia Shape Sets, the JavaSwing
Library, Eclipse plug-ins and software product line asset bases.

2 The Importance of Models

The development of a standard vocabulary, requirements, and sup-
porting models is an important step in the maturity of a discipline.
Having the common understanding of an area that a model can fos-
ter has many advantages including:

• Improved ability to discuss problems and solutions

• A common understanding of the available design space

• An ability to compare solutions and techniques

• Guidance for those new to an area

The OSI seven layer model of a computer network [11] is a classic
example of how a model can support the evolution of an area.

A better understanding of a domain, in this case the domain ofli-
braries, should allow development of better products. For example,
our model explains the connection between a library and a number
of issues including how its assets are deployed onto production sys-
tems and the relationship between deployment issues and an asset‘s
binding times. This is an area that is frequently ignored in library
development, but may greatly effect the usefulness of the library.
By providing advice about these issues we enable the development
of better libraries.

3 Current Usage

While libraries are referred to frequently in the literature, a com-
prehensive definition has been lacking. Most writers are content to
use the formula: ”A library is a collection of X.” Where X could
be almost anything: functions, classes, architectures, use cases, test
cases, documentation, specifications, or other artifacts.Examining
how the term library is currently used, we find two different per-
spectives on library use:

1. A collection of software artifacts used by a developer, who
is normally in a different organization from the library cre-
ators, to assist in the development of a program. Here the key
problem is how someone unfamiliar with the contents of the
collection finds and selects useful items. This often assumes
the need to adapt the items found. The actual mechanisms, by

91

which products are composed, are not generally discussed.

2. A mechanism that holds a collection of artifacts for the pur-
pose of facilitating composition with a product. The compo-
sition mechanism is often defined by the operating software
or an intermediate runtime environment. Dynamically linked
libraries (DLL) are an example. In this case, it is assumed that
the desired items can be located and adaptation is not needed.
The library users’ problem of understanding and selecting as-
sets is ignored.

While not contradictory, these two different uses of the term point
to different aspects of libraries, both of which must be considered
to gain a complete understanding.

4 Why Call It a Library?

The general notion of a library has several characteristicsthat apply
to software libraries including:

• Library refers to both a collection of items and a facility in
which to house the collection.

• Libraries typically organize their collection in a systematic
manner and may limit their collection to have a common fo-
cus.

• Items are gathered together into a library to improve access
and management.

• The library makes the items more public or available.

• The container for the items, be it a book case or building,
improves access to the items.

• The library differs from a storage warehouse in that items are
intended to be accessed frequently and individually.

• The library differs from a repository by making items more
public, where as a repository removes items from circulation,
making the stored items more protected, and in the process
more private.

• Modern libraries are collections of many types of elements
such as books, videos, computer programs, and many other
elements.

The goal of a library is improved access and use of the items inits
collection.

Software libraries have the additional constraint that we create them
for the purpose of helping to develop products. As a result, while
items in the general case are typically free standing assets, most
assets in a software library will be parts or modules that acquire
their ultimate usefulness only when combined with other assets,
either from another library or custom assets, to form a product.

With this background, our basic definition for a software library can
be stated as:

• A collection of composable assets,

• that contribute to building a product,

• aggregated within a mechanism that holds the collection for
the purpose of promoting reuse by providing greater accessi-
bility,

• for use by others.

Design a Library

Find an Asset

Compose an Asset

Library Developer

Library User

Client Product

Add an Asset

Adapt an Asset

Figure 1. Use Case Diagram for Library.

5 A Software Library Model

In this section we present the results of a domain analysis ofa soft-
ware library. We use this method to present several in-depth dis-
cussions of the concepts found in the domain. We use the Unified
Modeling Language (UML) to describe the results of the analysis.

The model we present is intended to be abstract enough to cover
a very broad range of libraries, not just those containing program-
ming language artifacts. Take, as an example, a drawing program
that lets its user build a complex form and then store it into apalette
for future use in other drawings. Such a palette of objects, when
implemented in software, can be considered a software library. We
want to be careful that such an example can be described by our
model. Once a model of this generality is established, it canthen
be specialized for more common examples, such as programming
libraries, or even further specialized, perhaps for class libraries. We
defer these more specialized cases to future work.

5.1 Use Cases

We begin with the use case diagram of the domain, shown in Figure
1

The domain has three actors:

• The Library Developer provides the contents of the library.

• The Library User creates or maintains a product and composes
the library’s assets into the product.

• The Client Product is the product composed using the library
assets. For some composition mechanisms the product acts
directly to compose itself with the library. For example, re-
solving and executing a branch to use a shared library. In
other cases, the client product is passively assembled by the
library user. Even in these passive cases, the assets in the li-
brary must conform to the mechanisms used to compose the
product.

The diagram has the following high level use cases:

• Design a Library - Since we believe that a library has more
coherence then simply a collection of assets it should be de-
signed as such. One obvious design activity is scoping, as a
particular library should focus on a set of related abstractions.
Library design also establishes the context in which the assets
are intended to be used. Libraries should be designed so that

92

they are: complete, consistent, easy to use, and efficient [8].
A key to designing a library is understanding how it is used
and how the division of roles between the library developer
and the library user effects the design. This paper will focus
on these use issues, rather than the design issues of a library.

• Add an Asset - The library developer creates the library by
adding one asset at a time. Left implied is the ability to re-
move and modify assets already in the library. Adding an
asset is singled out from other development activities as the
result is visible outside the development environment.

• Adapt an Asset - By adaptation we mean the process of man-
ually modifying a pre-existing asset for a new use. In the case
of code, this is also referred to as code scavenging [9]. Adap-
tion may be applied by a developer, or a library user in the
case that the library user has access to modifiable asset, typ-
ically source. Adaptation may be applied to any pre-existing
modifiable asset, not just library assets. For example, code
examples from a text book could serve as the source for adap-
tation. While library assets may be adapted there does not
seem to be any unique role that the library plays in this pro-
cess that distinguishes it from other asset sources, as suchit is
not considered further.

• Find an Asset - The library user must be able to find assets
that are appropriate to his problem. The user must then be
able to understand the asset in order to determine whether the
correct asset has been found.

• Compose an Asset - The library user must be able to com-
pose assets into products. The ability to compose an asset
into a software product in an automated fashion is what dis-
tinguishes a library from other collection of software artifacts.
Assets in the library must be designed to support composi-
tion. It should be noted that some composition mechanisms
are more flexible than others. The C++ template mechanism
allows the related code to be composed with a variety of vari-
able types. This sort of flexibility, does not use manual inter-
vention, does not change the original asset, and does not add
additional assets into the library. These difference distinguish
this sort of flexibility from adaptation.

Conventionally, we think of the library user as being a product de-
veloper, who selects particular pieces of a library to be composed
into the product. In this case, the ability to search within the library
is important. For products that have an open extension capability,
the end user who is engaged in product composition, is the library
user. For example, the end user might modify a web browser by
composing it with a plug-in. In this case, the user typicallydoes
not search and select from among library assets, but insteaddecides
whether to compose a feature.

Allowing a user to compose features has the effect of creating a
domain specific language, a language that corresponds to theprob-
lem domain and does not require understanding of or access tothe
solution domain. This is an important distinction from adaptation,
which requires access to and understand of the solution domain,
and does not provide a new problem solving vocabulary.

5.2 Concepts

The concepts needed to describe a library and its assets are shown
in a class diagram in Figure 2. We provide a glossary in Table
1 to give a brief definition of the classes in the diagram. The key
abstractions in the diagram are assets of various types. Of particular
note are two types of composite assets whose main purpose is to

Asset

Product AssetSupporting AssetComposite Asset

Asset Package

Deployment ContainerLibrary

Context

Figure 2. Top Level View of Library.

collect assets - the library and the deployment container.

5.2.1 Relationships between Assets

The dominant relationship among the assets, at a conceptuallevel,
is described by the composite design pattern [6]. This recognizes
that one relationship among assets is hierarchical, i.e., assets may
be composed of other assets. This has different implications for
the different asset types. In the case of simple assets - product and
supporting - this means that existing assets in the library may be
used to compose new library assets.

For deployment containers the composite pattern provides three
types of relationships:

1. A deployment container could contain a collection of simple
assets for which it provides a composition mechanism. This
is the most common case.

2. A deployment container could contain other deployment con-
tainers as one way to supply additional composition mecha-
nisms. An example is an Eclipse plug-in which uses a jar file
to hold executable assets.

3. A deployment container could contain a library. This would
provide a way to move the library as a unit to other develop-
ment systems.

For a library the composite pattern provides three types of relation-
ships:

1. A library contains a collection of all the simple assets, this is
the reason we have a library.

2. A library contains a collection of deployment containers.
Having more than one type of deployment container allows
the library to offer more than one type of composition mech-
anism to client products.

3. A library contains a group of related libraries. The context
of a contained library must inherit the context of a containing
library. A library may have more than one parent library.

5.2.2 Assets

The items we collect in the library are assets. We call them assets
because we assume that they have value or we would not bother to
collect them. We divide assets into product and supporting assets.
Product assets are composed into a product. A supporting asset
helps us make use of a product asset. For example, a Javadoc page

93

Table 1. Glossary
Asset an item that has enough value for us to col-

lect. Three types of assets - product, sup-
porting, composite

Product Asset an item that is composed into a product
Supporting As-
set

an item that supports use of a product asset,
such as documentation

Composite As-
set

a collection of assets; Types of composite as-
sets - library, deployment container

Asset Package shows the relationship between a product as-
set and its supporting assets

Library collects assets and deployment containers
Deployment
Containers

collects product assets in a way that is com-
posable with a client product

for the Swing GUI is a supporting asset for the Swing class library.
A product asset is not necessarily an executable asset. A help file
shipped with the product is an example of a non-executable product
asset. A build script is an example of a supporting asset thatis
executable.

What distinguishes a software library from other collections of soft-
ware assets is the ability to compose library assets with a product,
identified in the compose an asset use case. The importance ofsup-
porting this use case is what motivates the distinction between prod-
uct and supporting assets. The asset package relationship groups
supporting assets with the product asset with which they assist. If
an asset package does not include a product asset, it cannot be com-
posed into a product.

While executable modules, such as program functions, are the old-
est and most widely used asset type, every phase of software de-
velopment can take advantage of reusable assets, and a library can
assist in increasing the reuse those assets. During the specification
phase, we might use a library that includes standard use cases for
some category of product to compose the use cases for our prod-
uct. During the high-level design phase, we might use a library that
includes UML diagrams describing standard subsystems to com-
pose the product architecture. During the detailed design phase, we
might use a library that includes pattern languages to guidethe com-
pletion of the design. During the implementation phase, a library
that includes code fragments might be used by a program generator
or an aspect weaver.

In most existing libraries, the product assets of a library tend to be
of the same type or at least apply to the same development phase.
However, the assets in a library do not need to be homogeneous. We
can gain considerable power by including all of the assets needed to
produce a particular product. For example, a library might include
assets, such as UML diagrams, that can be used in the design phase
along with the executable assets needed for that product.

The assets we set out to collect are product assets, those assets that
become or produce part of a product. The most common example is
a source file in some high level language that compiles into a link-
able executable. However, other inputs to a build process, such as
frames, meta-models, layers, etc. may play the same role. Asmight
a collection of predefined shapes for a drawing program. The sup-
porting assets are collected to assist with using a product asset. If
the product asset is removed from the library, the supporting assets
should be removed as well.

The idea that assets are collected to build products means the ability

to use an asset in multiple products is a planned result. In this view
there is no such thing as a truly “general purpose” asset, that can
be used in every setting [10]. We build a particular thing andthe
thing we are building imposes requirements on its parts [2].The
possibility of meeting these requirements by chance are quite low,
this rules out several approaches to acquiring assets that have been
commonly used.

5.2.3 Library

The term library refers not only to the contents of the asset collec-
tion but also the mechanism used to collect and manage the assets.
The library has several attributes that are unique. The library is the
level of abstraction where all three of the users we identified (library
developer, library user, client product) are addressed.

To assist library users, library developers provide a number of sup-
porting assets to explain and guide using the library. Theselibrary
level aids might include such things as tutorials on the use of the
library and example programs that show how library assets might
be used to solve a common problem. The library may contain one
or more search mechanisms, whose primary purpose is to assist the
library user in finding assets. To support client programs, libraries
should make product assets available in a composable way, often
through deployment containers.

The library should add value beyond the value of the contained as-
sets. The services provided by a library include:

• Collection support. Allow assets to be used as a group or indi-
vidually. For example, copy or move an entire library instead
of each of the contained items.

• Access or composition support. Assets are intended for use by
client programs outside of the library. It should be possible to
compose an asset in a client program without copying it out
of the library. The library may provide multiple composition
mechanisms that support different binding mechanisms.

• Selection support. A recognized truism in reuse is that an
asset must be found before it can be reused [9]. This problem
is more obvious in libraries since library users are a separate
group from library developers. The library should provide
support to the user to find assets.

5.2.4 Deployment Containers

Deployment containers allow the library’s product assets to be com-
posed with client programs without access to the library’s develop-
ment environment. Independently deploying a subset of the library
assets in a composable way is the key to a library’s ability toshare
and make public its assets, in contrast to other deployment con-
structs, such as repositories1. It is so fundamental to the library that
the deployment container is often confused with the library. As can
be seen from the use of the term “dynamic linked library” for what
is actually only a deployment mechanism.

We can divide deployment containers into two categories:

1. Those that deploy library assets to product development sys-
tems. An example is the statically linked library, which is

1Recent literature often uses repository as a synonym for library,
but typically ignores the aspect of deploying assets away from the
development system. It is not clear if this difference is meant to
distinguish the two.

94

composed during the development phase by a linker. De-
ployment to a product development system includes providing
those supporting assets that assist the product developer.

2. Those that deploy library assets to production systems. Ex-
amples include the DLL (dynamic linked library) which the
client links to at runtime. Putting deployment containers on
the production system has the advantage that a single copy of
the library assets can be used by multiple client programs. For
example, most operating systems provide only a single I/O li-
brary for all of the hosted applications.

The composition mechanism supported by a deployment container
determines the point in the software development process atwhich
composition with the client program takes place; this is known as
binding time. Libraries are usually assumed to have a singlebinding
time, but this does not have to be the case. A library may have
multiple deployment containers, each supporting a different binding
time.

Once dispatched from the library development system, the deploy-
ment container and its enclosed assets are no longer under the man-
agement of the source control system. Therefore, deployment con-
tainers need a method of versioning independent from that ofother
development assets.

5.2.5 Context

All software artifacts are used in a particular setting or
environment[10]. In this model, context represents the environment
in which we intend to use the library assets. Context is included in
our model to support the compose asset use case. As Alexander
discussed in his classic teakettle example, the correctness of an ar-
tifact can only be understood in relation to the context intowhich
we expect them to fit [1]. Alexander points out the dimensionsin
which an artifact must fit its environment are not enumerable, so
a complete model of context is not possible. We show the major
areas to be considered and discuss how context affects product de-
velopment. Figure 3 shows our view of context as it applies to
libraries.

We divide context into two parts [5]:

• the product domain, which describes what we are trying to
build

• the solution domain, which describes how we can build a
product

We further divide the solution domain into two parts:

• the platform, which specifies the library’s dependences

• the architecture, which defines how the assets may be com-
posed

If our library is contained within another library, its context includes
that of its containing library. The contained library may impose
additional requirements but must continue to meet all the require-
ments imposed by the containing library.

We associate the context with the library rather than the individ-
ual assets. This differs from other proposals, notably the OMG
Reusable Asset Specification (RAS), discussed in section 5.2.
There are several advantages to our approach:

• Context can be used to group assets. For a given project, we

LibraryContext

Product Domain

Platform Architechture

Solution Domain

Figure 3. Context Detail.

are typically only interested in a particular context. For ex-
ample, a particular hardware platform or language may have
been chosen for the project. Placing the context at the library
level allows the entire collection to be evaluated, at leastat this
course level of decomposition, for suitability to the project
without examining each asset.

• One of the barriers that prevents a library user from using pre-
existing assets is the difficulty in understanding those assets.
This difficulty can be considered an additional cost of using
the library, which in turn may cause the library user to choose
to develop a new purpose built asset as a substitute for a pre-
existing asset from the library. Placing context at the library
level allows the cognitive effort of understanding an assetto
be reused, at least in part, over the other assets in the library.
Thus, lowering the average cost of using a library asset.

• A shared context makes it more likely that assets from the
same library are compatible. If there is no common context
the inter-operating components may place different interpre-
tations on data values leading to incorrect results. An exam-
ple, this occurred recently when one component in the Mars
Climate Orbiter pro-ject used english units and another com-
ponent used metric units, resulting in the loss of the space
craft. The loss of the first Ariane 5 rocket was due to a com-
ponent that expected a different size for a numeric parameter
then what was provided by another component. We will often
want to use more than one asset from a library in the same
product, such that the output from one asset will become in-
put to another. An example where many components from the
same library typically inter-operate can been seen with GUI
libraries. Think of the difficulty if each widget used a differ-
ent unit of size (pixel, point, pica, inch, centimeter, etc.) and
a different coordinate system for positioning.

• Many characteristics of a good library [8] depend on the assets
in a library exhibiting similar behavior and usage characteris-
tics. This similarity can most easily be achieved by placing
context once at the library level, rather than trying to insure
that contexts for each asset have the same values. Examples
of such characteristics are: consistency, ease-of-learning and
ease-of-use.

95

6 Contrast with Other Models

6.1 IEEE Standard 1420.1

Despite the longevity of the software libraries the only previous at-
tempt we were able to find to provide a model was made by the
Reuse Library Interoperability Group (RIG), an industry consor-
tium [3]. Their work was published as IEEE standard 1420.1[7].
Their goal was to provide only an interface definition to exchange
libraries, not a complete model. Much of this work is relatedto
tracking software certification and specifying intellectual property
rights, which was codified in standards 1420.1a and 1420.1b re-
spectively. These issues are not of interest to us and will not be
considered further.

The model provided includes only a class diagram; there is nouse
case diagram. This makes it difficult to be sure what they see as the
overall role of the library. The existence of pre-existing libraries in
the model implies the role of library developers. The use case they
explicitly support is selecting an asset for reuse. There isnothing
in the model to specifically support the composition of assets with
client programs.

In the class model there is no equivalent to deployment container,
which selects and supports assets for composition, this also fails to
support a way to specify binding times. The library class lacks any
attributes to assist in selection or limit searching without looking at
all the assets contained. There is no way to specify a constraint on
the asset to be included in a library. This is somewhat surprising as
members of the RIG group stated that they believed librariesshould
be focused, specialized, collections, not general purpose[3]. Mov-
ing the domain attribute from the asset to the library class would
help here. The role of architecture in reuse is completely ignored.
There is no distinction between assets that are used in the product
and supporting assets. In short, the role of context is ignored.

6.2 OMG Reusable Asset Specification (RAS)

OMG Reusable Asset Specification (RAS) [12] primarily models
assets, however, it also models the relationships between assets, and
even (briefly) discusses a repository for assets. In this model, the
asset, which is often referred to as anasset package in the standard
is composed of 5 parts: solution, profile, usage, classification, and
related asset. The solution asset corresponds to our product asset.
The other parts make it easier to work with the solution, which
corresponds to our supporting assets.

While we provide a descriptive model, RAS is a proscriptive ap-
proach, which imposes requirements related to OMG’s Model
Driven Architecture (MDA). It is interesting that to provide auto-
mated assembly in MDA a large amount of context information is
required. RAS puts its context information at the asset level. As has
been noted, this means all use decisions must be made for eachas-
set, instead of reusing information about the collection. In practice,
this may be mitigated by a combination of the large granularity of
the components intended for RAS and the planned developmentof
detailed implementation profiles.

The RAS standard also defines RAS Repository Services. These
define Java and HTTP methods to store and retrieve assets from
a RAS Repository. However, no model is provided for the repos-
itory. The RAS glossary defines a repository as: “A centralized
access and storage point for reusable assets.” It is not clear from
this which use cases are envisioned. It does not seem to involve the

Shape - XML : Product

Icon - PNG : Product

Asset Package

Shape Family : Library

Sheet : Deployment Container

Context

Product Domain = drawing
Platform = XML

Figure 4. Dia Object Diagram.

actual composition of assets. The text mentions that these services
are intended for small and medium repositories. However, itis not
clear how the “centralized access and storage” is related tothe mul-
tiple repositories. Also, there is no guidance on why an asset would
be in a particular repository or how assets in a particular reposi-
tory are related. The glossary also defines a reusable asset library
as a“conceptual composite artifact that encompasses all possible
reusable assets” which sounds much like the failed general purpose
library paradigm. This concept of library is not otherwise referred
to in the document and does not explain its relationship to reliable
asset repositories.

7 Analyzing Some Examples

To validate our library model we analyzed a variety of libraries, to
check if the model can describe them. Here we present as examples:
Dia Shape Templates, the Java Swing Library, Eclipse plug-ins and
Software Product Line asset bases. Swing will represent a typical
class library. Eclipse and asset bases are not generally thought of as
software libraries; however, they are collections that fit our library
definition. Studying these examples can show how more extensive
use can be made of libraries particularly in terms of improved asset
composition. They illustrate the importance of context to library
usage. They also provide an example of how a standardized model
can help explain new material.

Both Eclipse plug-ins and Software Product Lines will show us
something about the future directions of the software library do-
main. Domain choice drives the architecture and related design
rules. Having a well defined context for product and solutiondo-
mains supports the design of assets that are composable without
modification.

7.1 Dia Shape Sets

The Dia drawing program allows users to define shape sets. The
object diagram for Dia shapes is show in Figure 4. Dia is a draw-
ing program designed to draw different types of diagrams. Itcomes
with shape sets for drawing such things as electronic circuit dia-
grams, UML diagrams, flowcharts, etc. The main abstractionsthe
program works with are shape objects and connectors.

The basic asset type in Dia is a shape. Dia supports the hierarchi-
cal composition of shapes. Existing shapes can be used to draw a
new compound shape, which can be saved as a shape. Shapes can
be collected into sheets. This allows related shapes to be collected

96

JavaDoc Page : Supporting

Class Source : Supporting

Asset Package

Swing : Library

Jar: Deployment Container

Context

Product Domain = GUI
Platform = Java

Class Executable : Product

Web Page : Library Documentation

Figure 5. Swing Object Diagram.

together. For example, AND, or, NAND, and XOR shapes are col-
lected in a circuit sheet. Sheets allow a set of shapes to be pulled
into the program as a group and made readily available to the user.
Adding a shape set extends the programs capabilities.

A typical asset package, for a shape, has two product assets,a file
which provides an icon to represent the shape on the palette menu,
and a file which has an XML description of the shape which the
Dia program can translate into a drawing. A sheet acts as a de-
ployment container, grouping a collection of shapes together and
making them available for composition. In this case the library user
is working interactively with the library, so the search / selection
mechanism is integrated into the client program. The user selects
a shape by choosing a sheet from an alphabetized list of names.
Choosing a sheet causes the icons for the sheet’s shapes to bedis-
played in a palette window. While the program comes with a large
number of shapes, and allows new ones to be built, the abilityto
organize shapes into groups with the sheet mechanism keeps the
number of shapes being worked with at a given time to a manage-
able level even with these simple search mechanisms.

Even though Dia shape sets are rather different from what is nor-
mally thought of as a software library, they meet both our under-
standing of a library, as well as the current usage of the term, that is
a collection of assets. This object diagram shows that our model is
able to accommodate them as well.

7.2 Java Swing Library

The Swing library is typical of Java class libraries. An object dia-
gram for the Swing library is provided in Figure 5. It is similar in
structure to many other class libraries, but provides a better docu-
mentation specification and supporting tools (such as Javadoc and
Jar files) than most library systems.

A typical asset in a Java library is a class including the special com-
ments that are used as input for Javadoc. Physically the class is
defined in a single source file ending with a .java suffix. The class
source code file is the input to the Java compiler to produce anclass
file and to the Javadoc tool which will produce a hyperlinked web
page to document the class. The asset package for each class will
bundle a Java source file, executable class file, and a web page.

The library provides documentation, a search mechanism, and a
deployment container. Javadoc specifies a standardized format de-
scribing the library as whole. This page provides hypertextlinks to
other library documentation, such as tutorials, and hypertext links

to the generated web pages for each of the classes in the library. The
links to the class web pages form the primary index for the library,
based on an alphabetized list of class names. Since this documen-
tation conforms to the standards for the web, any web-based search
engine can provide an additional basis for search using textmatch-
ing.

The Java language uses dynamic class loading rather than linking.
While the executable class files can be used directly by a client pro-
gram, Java also defines an archive file format, Jar, which serves as a
deployment container. The Jar was designed to move a collection of
class files around as a unit. Jar files have roles beyond deployment.
A client program can load a class from a Jar file without unpacking
it. If a program’s main method is in the Jar file, it can be tagged
to execute without unpacking the Jar file. Jar files can also include
security information about a group of classes.

Much of Java’s success is attributable to the support provided for
libraries. Javadoc provides Java libraries with extensive, maintain-
able documentation that has a consistent look and feel and a consis-
tent search mechanism. The Java virtual machine provides a hard-
ware independent platform thus eliminating one major aspect of ar-
chitectural mismatch. Many issues, such as memory management,
normally left to applications are handled by the Java runtime envi-
ronment, reducing the number of different context dependencies.

7.3 Eclipse plug-in

Eclipse is a modular, open-source product that provides an exten-
sible Integrated Development Environment (IDE) [13]. Its goal is
to provide a single user environment that supports the integration
of development tools produced by different organizations.Eclipse
allows the user to build a version of the product that fits their needs
by installing appropriate modules. While Eclipse is very modu-
lar in many ways it is also designed to fit the needs of a specific
domain (IDE), a specific platform (Java), and provides a specific
architecture that modules must adhere to in order to be composed.
An object diagram which presents Eclipse modules as a library is
provided in Figure 6.

The typical Eclipse module provides a development tool or closely
related tools. For example, to support a compiled language requires
not only a compiler, but also a language specific editor, templates
for the different file types in the language, debuggers, wizards, and
a variety of documentation. Eclipse differs from most libraries by
the emphasis it puts on supporting assets; and its support ofopen
module composition after deployment.

Tools for Eclipse are deployed as features. A feature is a group of
plug-ins that are deployed or upgraded together. For the user, the
feature is the unit of both deployment and versioning. Physically a
feature is composed into a compressed file, to allow it to be moved
as a unit. Each plug-in in the feature has its own directory. Plug-ins
provide or support different parts of a feature, as they extend dif-
ferent parts of the Eclipse platform. For a compiled language, we
would expect the editor to be placed in one plug-in, while thecom-
piler, which can be run without a user interface, would be in adif-
ferent plug-in. Each plug-in must provide a specification, called the
manifest, written in XML, that describes the plug-in to the Eclipse
platform. Beyond the manifest, the assets provided for a plug-in
vary. If a plug-in has an executable portion, it must consistof Java
class files collected in a Jar file, located in the plug-in directory.
This is an example of one deployment container, the plug-in,con-
taining another, the Jar file. Documentation is stored in theplug-in

97

Context

Product Doman = IDE
Platform = Java
Architecture = Eclipse

UML Studio : Library

Feature : Deployment Container

Plug-in : Deployment Container

Manifest - XML : Supoorting

Jar : Deployment Container

Documentation - HTML : Supporting

Figure 6. Eclipse Object Diagram.

directory as html files, and may be put into its own plug-in to make
it easier to internationalize. Other assets found in plug-ins might
include icons, images, web templates, etc.

The Eclipse model provides support for all three of our use cases.
Adding assets is supported by a number of tools, such as the Plug-in
Development Environment (PDE), which provides wizards to walk
the asset developer through the process of adding assets. Searching
and understanding assets is supported by search features and an ex-
pandable help system. Plug-in assets can specify how they should
be included in the table of contents for the help system. A num-
ber of ways to compose assets are provided. Plug-ins can modify
the behavior of other plug-ins by extending them in an inheritance
relationship or can use other plug-ins by specifying a dependency.

7.4 Software Product Line Asset Bases

“A software product line (SPL) is a set of software-intensive sys-
tems that share a common, managed set of features that satisfy the
specific needs of a particular market segment or mission and that are
developed from a common set of core assets in a prescribed way.”
[4] SPL scopes which products will be included in the productline
early in the analysis. This allows the development of a common ar-
chitecture which has explicit variation points identifying where and
how different product within the product line will vary fromeach
other.

The core assets are collected in an asset base to be used in devel-
oping the products included in the software product line. The as-
set base is a heterogeneous collection, which includes assets for
all development phases, from requirements to implementation. It
is tightly scoped to include only assets that will be used in more
than one product in the SPL. A SPL may use library mechanisms
to group and prepare implementation assets for compositionwith
products. Thus, an SPL’s core asset base is an example of a library
containing libraries. While specific to a particular group of prod-
ucts, the size of an asset base may reach millions of lines of code.

The major differences between an SPL asset base and a traditional
library can be seen in the context provided and the relationship be-
tween reusable asset and the products built with them. The SPL de-
velopment process begins with a domain analysis which is further
defined by a selection of features to be supported and a grouping
of those features into products. So the product domain portion of
the context is well defined for SPL. The product domain is further
constrained by the selection of products that will be supported by
the product line. In contrast, other than a tool domain, suchas GUI

development, we typically don’t know the bounds of the product
domain for a reuse library. Within the product domain a traditional
library is intended to be used in an open set of products.

In the solution domain, an SPL will typically define a single ar-
chitecture to be supported. A typical reuse library will attempt to
support multiple and undetermined architectures, often aiming for
the difficult goal of being architecturally neutral. SPLs may support
multiple platforms, but the platforms supported are made explicit.
The influence of platform variants can be shown in the variation
points of the SPL’s architecture. Reuse libraries typically support a
single platform, but platform information is often implicit.

The relationship between the collected assets and the products pro-
duced also differs. SPL products are made primarily by assembling
assets from the asset base. Ninety percent reuse levels are typical in
product lines, with many reaching a hundred percent. All assets for
a product line are collected in a single asset base. All of theassets
in the asset base should be used in multiple products. Traditional
reuse libraries support a much lower frequency of reuse, typically
not exceeding fifty percent. Achieving this involves finding, under-
standing, and using many different reuse libraries. A givenproduct
will use only a small percentage of a library. It is possible that many
library assets will never be used in a product.

These differences are summed up by Clements “Software product
lines represent a significant departure from software re-use schemes
in which attempts are made to make assets as general as possible
without the context provided by an architecture and a scope defi-
nition, and from opportunistic reuse schemes in which low-payoff
assets are scavenged ad hoc from a reuse repository.” [4].

7.5 Summary

These brief examples show very different collections. The type and
strength of relationships among the elements in the libraries are dif-
ferent. In the Eclipse example, the elements would be expected to
be consistent with one another. On the other hand, a product line as-
set base may contain assets where chosing one asset excludeschos-
ing another, an exclusive-or relationship. The Eclipse example has
a very clear need for completeness - the plug-in needs to work-
while the product line asset base may be quite incomplete. There
are several directions in which this work needs to be extended:

1. The existing model should be applied to additional types of
libraries. The examples in this paper, Dia shapes sets, Eclipse
plugins, and software product line asset bases, in additionto
the programming libraries normally considered, suggest the
diversity of libraries that should be addressed.

2. The model is presented at a very abstract level to allow it
to cover the maximum range of libraries. Specializations of
the model should be developed for important categories of li-
braries, the most obvious being programming libraries. This
more specific model could consider common programming is-
sues such as error handling and memory management. A pro-
gramming library model could be further specialized to han-
dle common cases such as class libraries, active libraries,etc.

8 Conclusions

Software libraries are one of the oldest, most used approaches to
software reuse. Despite their long past and interesting future, there
has been almost no research on libraries as a product domain.Based
on experiences with other product domains, a thorough domain

98

analysis advances the state of the practice.

We have presented an analysis of libraries as a product domain, be-
ginning with the definition that a library is: A collection ofcom-
posable assets, that contribute to building a product, aggregated
within a mechanism that holds the collection for the purposeof pro-
moting reuse by providing greater accessibility, for use byothers.
While this covers many different types of asset collectionsit ex-
cludes many as well. A contrast can be seen in the World Wide
Web. The web is a collection of assets, including software, and it
provides search mechanisms to assist in finding the desired asset.
Yet, it is not a software library, because most of the assets are not
intended to be composed into products and because the web does
not provide a composition mechanism.

We have provided simple, but comprehensive, use cases. We have
three actors (library developer, library user, and client program) and
three essential use cases(add an asset, find an asset, and compose
an asset). With these use cases we avoid focusing exclusively on
either the search problem or the composition problem. As a result,
we highlight the need to be able to compose the assets found into a
product.

In our model by making the deployment container a separate en-
tity and allowing multiple instances, we open the way for support
of multi-binding time libraries. By making a clear provision for a
multi-binding time library we provide the opportunity for better li-
brary support for product lines, where multiple binding times is a
significant issue.

Finally, we have clarified the relationship between a library and its
context. There is growing acceptance that reusable software re-
quires an explicit context. This applies to libraries as well. The
library context includes both product domain and the solution do-
main of both platform and architecture. Our model identifiesthe
appropriate concept with which to associate context is the library,
not the individual asset, as has been the case in other work. Placing
context at the library level allows assets to be grouped by context,
allows better reuse of developers understanding, and produces the
situation where a library’s assets are compatible with eachother.

Libraries continue to be an important means of providing reusable
software; however, they are still understood, designed andbuilt in
an ad-hoc manner. This paper by providing the top level require-
ments and model is intended to provide a starting point for a com-
prehensive approach to library development and use.

9 References

[1] C. Alexander.Notes on the Synthesis of Form. Harvard Uni-
versity Press, Cambridge, Massachusetts, 1964.

[2] C. Baldwin and K. Clark.Design Rules: The Power of Mod-
ularity. MIT Press, Cambridge, Massachusetts, 2000.

[3] S. V. Browne and J. W. Moore. Reuse library interoperability
and the world wide web. InProceedings of the 19th Inter-
national Conference Software Engineering, pages 684–691.
ACM Press(New York), May 17-23 1997.

[4] P. Clements and L. Northrop.Software Product Lines, Prac-
tices and Patterns. Addison-Wesley, Boston, Massachusetts,
2001.

[5] J. O. Coplien. Multi-Paradigm Design for C++. Addison
Wesley Longman, Inc., Reading, Massachusetts, 1999.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns. Addison Wesley Longman, Inc., Reading, Mas-
sachusetts, 1995.

[7] IEEE. Data model for reuse library interoperability: Basic
interoperability data model (bidm). Standard 1420.1, IEEE,
1982. Standard for Information Technology - Software Reuse.

[8] T. Korson and J. McGregor. Technical criteria for the speci-
fication and evaluation of object-oriented libraries.Software
Engineering Journal, 7(2):85–94, 1992.

[9] C. W. Krueger. Software reuse.ACM Computing Surveys,
24(2):131–183, June 1992.

[10] J. McGregor. Context. Journal of Object Technology,
4(7):35–44, September-October 2005.

[11] L. J. Miller. The iso reference model of open system inter-
connection: A first tutorial. InProceedings of the ACM ’81
conference, pages 283–288. ACM Press (New York), 1981.

[12] OMG. Reusable asset specification. Standard RAS, Object
Management Group, 2005. http://www.omg.org/docs/ptc/04-
06-06.pdf accessed July 14, 2005.

[13] OTI. Eclipse platform technical overview. White pa-
per, Object Technology International, Inc., 2003. Paper
http://www.eclipse.org/whitepapers/eclipse-overview.pdf ac-
cessed July 14, 2005.

99

Making a Boost Library
Robert Ramey

Software Developer
830 Cathedral Vista Lane
Santa Barbara, CA 93110

(805)569-3793

ramey@rrsd.com

ABSTRACT
Boost is a loose organization of C++ developers dedicated to the
creation of high quality C++ libraries. It can be found at
www.boost.org [1]. This article describes the process of getting a
library accepted into Boost along with advice from one who has
been there.

Categor ies and Subject Descr iptors
D.2.13 [Reusable Software]:Library Software Development.

General Terms

Design, Human Factors, Legal Aspects.

Keywords
C++, Boost, Libraries.

1. WHAT IS BOOST?
Have you ever wanted to:

• do a really, really good job at something?

• provide the “definitive” or best solution to some
problem?

• make something that lots of really smart people would
appreciate and use?

• work to a higher standard than your current job requires
or will permit?

• demonstrate that you are really a good programmer?

Maybe you want to consider making a library and submitting it to
Boost.

 www.boost.org is a loose organization of C++ developers
dedicated to the creation of high quality C++ libraries.

Boost libraries are distinguished by:

• Wide applicability – libraries are usually things that are
widely applicable. The effort required to write a library
and get it accepted to Boost is not justified unless the
library is going to be re-used many times. For this
reason, many (though not all) Boost libraries are
fundamental building blocks like smart_ptr,

• As a corollary to the above, Boost libraries are portable.
They are written to the C++ language and library
standards with work-arounds for bugs in specific
compilers. Most Boost libraries leverage on idioms

already in boost which already have been implemented
in a portable way.

• Another corollary to the above is that Boost libraries
tend to strive to be the “best” or “definitive” solution to
a particular problem.

• There is relatively little repetition of functionality
within Boost. If there is a best and/or definitive
solution to a problem, other libraries generally
incorporate it.

• Boost libraries often use cutting edge techniques such as
template meta-programming to achieve desired goals.

• Boost libraries strive for high quality. This is attained
via an exhaustive testing discipline and corresponding
infrastructure.

The above common library features are the result of a very public,
rigorous and iterative peer review process that draws on the
experience and knowledge of the entire Boost community.

Boost libraries cover a wide range of functions and applications.
Among the most wildly used are regular expression parsing
(regex), smart pointers (smart_ptr), threading, date time, file
system, preprocessor, testing and correctness and others. It is
really not possible to convey in a short paragraph the breadth of
these libraries. A complete list can be found at [4]

All Boost libraries are subject to the Boost License [2] which is
designed to permit usage of the library as widely as possible.

As the author of the recently accepted Boost Serialization Library,
I can attest that making a library and getting it accepted into Boost
is much harder than it would first appear. This article describes
Boost and what it takes to get a library accepted. Note that
opinions and advice expressed here are my own. I do not presume
to speak for any other Boost members.

2. THINKING ABOUT YOUR LIBRARY
We all have at least a few really great ideas.

2.1 Some Ideas Are Really, Really Hard to
Implement.
Some things are inherently difficult. One recurring idea is a
dimensional analysis and units library. C++ operator overloading
makes this idea very appealing, so it is easy to get started. There
are many libraries available in this domain and several have been
submitted to Boost. None has yet reached the formal review
stage. This may be because there is wide applicability of such a
package and it is very hard to reach a consensus on requirements
and implementation. Many people need dimensional analysis and

have made and used libraries that suit their needs. Making one
library that covers enough applications may be just too difficult,
so no consensus has been reached.

2.2 Consider Making a Smaller L ibrary
As we will see below, making a Boost library and getting it
accepted can be a huge undertaking. Before embarking on the
process, you should consider if you can see it through. It may be
a better choice to make a smaller library.

Many of the most useful and widely used libraries, such as
STATIC_ASSERT, are small but tricky.

Even a small library will entail more work that you might think.
Better to make something small that is really useful rather than
something bigger that does not get finished.

2.3 Star t Wr iting Documentation.
I know that seems backward to a lot of people, but bear with me.

• Description – what this library does.

• Motivation – why is such a library useful?

• List of features required by such a library.

• List of other libraries that do something similar and how
your library is different and or better.

• To get started, you will have do some research. Be sure
to include the Boost website in your search:

• Website. Something like your library may already be in
Boost. Or perhaps something you can build on is
already there.

• Mailing list. Here is all the information about previous
proposals and submissions. It is quite possible that
something similar to your library has been submitted in
the past and not been accepted for some reason. If so,
you need to know it. It is also possible that the problem
your library is intended to solve has been discussed.

• Files section contains libraries that have not been
formally accepted into Boost, for various reasons.
Some may be in process of development. In many
cases the library is more of an experiment than a full
blown library. The author might have submitted the
library but did not have the time to push it all the way
through the process. In my view the files section is an
underappreciated gold mine of useful code. I look
through it all the time when I have a small sticky
problem. Need to render in integer in roman numerals?
It is in there!

Your library should leverage facilities already in Boost rather than
re-invent any wheels so you can spend all your time concentrating
on the unique aspects of your package.

At this point, Boost recommends that you query the list to see if
there would be interest in your submission. This is commonly
done. Personally I do not think such a query is always a great
idea. If you have done your research, you should have a good
idea whether or not your proposed library will be interesting.
When you query the list you risk getting involved in an
opinionated discussion that revolves around a still nebulous idea.
My view is that the real issues do not present themselves until

some code is written, tested and compiled. My (silent) reaction to
such queries is: Hmmm – might be interesting, let’s see the code
and some documentation.

2.4 Become Familiar with Boost Tools
Start out by installing the current Boost libraries on your
development system. Boosters think this is easy. And it is, after
you are familiar with it. It means getting paths and environmental
variables setup for the command line version of your favorite
compiler and a couple of other things. Unless things go perfectly
the first time, you will have to investigate how the build system
works which takes some time. For this reason lots of users of
Boost libraries just incorporate Boost source code headers into
their projects. Many of the Boost libraries are supplied as header
files and do not require the building of linking libraries.
However, for a library developer you will have to become familiar
with the whole system.

2.4.1 bjam (boost jam)
Boost has its own system from building executables and running
tests. It might best be described as a next generation of UNIX
make. The main component bjam processes a Jamfile which
describes the requirements for buiding libraries, and executables.
Dependencies between header and source files are handled
automatically. Also compiler, library, and platform dependencies
are also handled automatically. Generally, there is little or no
compiler, library, or platform specific information in a Jamfile.
In this way, your library will be built and tested on other
platforms without anyone having to do anything special. Of
course that is the theory. In practice there is usually a little bit of
effort required to specify small adjustments required for different
environments Without bjam, it would be a huge effort just to test
someone else’s code – now it is manageable.

bjam is used to build libraries and also run a test suite for each
library. Information on using bjam is spread among several web
pages on the boost site. Perhaps the easiest way to get familiar
with bjam is to use the bjam files for other libraries as models for
your own.

Unfortunately, it is one more thing to learn and at the beginning it
will feel like its slowing you down. In fact, it IS slowing your
down. But the investment in effort to become familiar with it will
be paid back many fold as your library becomes more elaborate
and ported to more platforms.

2.4.2 Documentation
As I write this, most of boost documentation is in HTML files.
This is considered acceptable for new submissions. These files
may be generated by hand or with another tool of your own
choice. To save time I used a skeletal set of HTML files from
boost that provided all the sections, and style information that is
common to boost libraries. I found this very helpful. Boost is
moving towards a new system for documentation, Boost.Book,
which maybe worth investigating.

2.4.3 Boost Test
Fundamental to a library submission is a test suite. The key tool
for building tests is the Boost Test library. This described in the
Boost library documentation in the section “Correctness and
Testing” [5]. Tests are run on separate test servers and produce a
daily test matrix which shows all test failures organized by library
and compiler.

2.4.4 Other Boost Tools
It is really necessary to have reviewed most of boost libraries to
understand what is available already. Boost contains lots of code
to simplify program portability, ensure correctness and implement
commonly required idioms. Code that needlessly includes
functionality already in boost will probably not be accepted. It
takes a little time to become familiar with all this.

3. CRAFTING YOUR SUBMISSION
Now you are ready to write your code. More likely, you have got
your original code and you are ready to start making it acceptable
for Boost.

In order for your library to be evaluated, others will have to
experiment with it, test it and use it.

If someone wants you to try out their code, they had better make it
as easy as possible for you – correct? You could not spend time
fiddling around with compiler settings, deciphering incomplete, or
unclear documentation or otherwise wasting time. Well, surprise,
no one else can either. Be prepared to submit a self contained
package that “ just works” . Given that the Boost community uses
a variety of compilers, libraries and platforms, this challenge
might seem impossible at first glance. Boost tools provide a
solution to this problem, so now you will start modification of
your code to do it the “Boost way” .

Code, make test, add to Jamfile, debug, add to document,
redesign, re-factor and repeat until done. Soon you should have
the following in your personal copy of the Boost directory tree:

• Code for your library’s headers and source files.

• Code for tests and demos

• Jamfiles for build and test

• Documentation for library usage

When crafting your library:

• Work to the C++ standard – not to a particular compiler.

• When the compilers you use to test cannot handle the
standard conforming code, make changes to achieve
portability desired. Use facilities already in boost to
achieve the desired portability.

• Use at several different compilers. This will increase
the number of people that can/will tryout your library.
All compilers have bugs and quirks. Building your
code with more than one compiler/library helps make
your code more portable and standard conforming.

• Leverage other Boost libraries to achieve portability and
gain “ free” functionality.

• Add a section to your documentation titled “Rationale” .
As writing on your library progresses, you will be
required to make non-obvious design and
implementation decisions. For each of these decisions,
add an explanation to the “Rationale” . Later, when it is
asked why you did something a certain way, you will
not waste a lot of time re-discovering your original
reasons.

• Include a tutorial with an example program in your
documentation. This should permit an interested party
to see the utility and ease of use of the library in a very
short time. In a sense, the function of this section is to
“sell” the library to a potential user..

• Include reference documentation to catalogue its
features and usage.

• For each library feature, include a test and add it your
Jamfile. Also add an entry to your reference
documentation.

• Repeat the cycle, adding features until the library is
mature enough to demonstrate its utility, design,
direction and final form. It does not have to be
complete, but it should have functionality that others
can benefit from, including working code,
documentation and tests.

Eventually you should have enough of the library done that it can
be evaluated. The documentation and code might have some
placeholders but it will be clear what you envision as the final
version. Now you are ready to submit to Boost for preliminary
consideration. Announce your submission on the Boost
developer’s list and make it available to interested parties in one
or more of the following ways:

• zip, gzip, or tar your submission into one file. Be sure to
retain the Boost compatible directory structure. This
can be uploaded to he Boost files section and/or to your
personal website.

• Request CVS access to the boost-sandbox project and
check it in there.

If all goes well, you should get some feedback on the list within a
couple of days. If you do not get any feedback, try announcing
again as sometimes the list is focused on a heated technical
debate, formal review in progress, new release or something like
that. The Boost community is large so usually there is someone
interested in just about any topic posted.

Hopefully some people will find your package interesting, useful
and transparent enough to experiment with.

4. DEALING WITH FEEDBACK
Now the fun begins. Hopefully you will get some feedback.
Hopefully at least some of it will be positive. Here is what you
might get.

4.1 I t’s Got Bugs
Well, shame on you. You did not test it exhaustively enough –
this is a big turn off for users. Think of your own reaction when
you have a problem, find something that purports to solve it, and
it turns out to be more trouble than its worth. You are
disappointed and reluctant to trust the library (and its author)
again. Do not do this to your users or to yourself. Better to have
something useful that has a path to the future than something that
does not work along with a promise about how great it is going to
be.

Maybe it is a misunderstanding – ask the user to run your tests –
or add a new test.

4.2 I t’s Useful But I t Needs Feature X
Now we are getting somewhere. Someone is actually trying to use
it. This is a big accomplishment. Feature requests come in lots of
flavors.

• There is a way to do it – it is just not clear from the
documentation and examples. So it is just a
misunderstanding. This is your cue to add another
section to your documentation with a supporting
example and test.

• It is already planned for the future. Very good – they
want more. Acknowledge the request and put it your
list.

• You never considered it, but it is a good idea. Great,
put it on your list.

• You are convinced feature X is not a good idea. –
explain why this feature is not included and not
planned. This may start a discussion thread. If you
already considered this and rejected it, it should already
be in the “Rationale” section of your documentation.
Eventually it will get sorted out and hopefully a
consensus will be reached. Be sure that the entry in the
Rationale reflects the relevant aspects of the discussion.

4.3 How Do I Use the L ibrary To Do X?
This question is similar to a feature request. It will result in either
a promise to add a new capability, an example or demo with an
attached explanation showing that the capability is there, or a new
entry in the documentation indicating why the capability is not
there.

It is often easier to write a small demo showing how to do
something than it is to explain how to do it. It is much better than
a seemingly endless back and forth on the mailing list. Add the
demo and explanation to your test set and documentation. If you
do not do this, the same question will come up again and again.

4.4 Personal Comments
Boost mailing list discussions are governed by the Boost
Discussion Policy [3]. This policy is designed to make mailing
list discussion as productive as possible and avoid problems
which can plague other mailing lists. Among other things it
proscribes personal attacks and admonishes list members to stay
on the subject. Members on the list use their real names.
Occasional gentle reminders keep this list functioning in a product
and professional way.

Of course someone might slip and say “This feature is useless”
rather than “When would I use this feature?” which is far more
likely to elicit a useful response. Should something like this
happen do not take it personally. Often what seems offensive is a
communication problem. Remember that the Boost list is a world
wide community. Sometimes there can be misunderstanding
because of language difficulties. Unless you are in a position to
respond to a poster in his native language, have some patience.
Generally I like a little humor in posts – but remember that it can
be the source of a misunderstanding and someone can be offended
when there was no such intention.

Often the poster may have a valid point even though he phrases it
in an irksome manner. Just respond to the substantive point and
ignore the rest.

When arguing issues related to your library, stick to the Boost
discussion policy.

The most heated discussions revolve around differing opinions
and hypothetical situations. Often time the best thing is to make a
small test program and get some real facts. That will usually
resolve things. In any event, the discussion will move to a higher
plane that revolves around interpretation or applicability of real
results of a real case rather than speculation based on hypothetical
situations.

4.5 The Next Step
Well, you have your input. Most likely you have a long list of
things to do. Some people find the feedback discouraging; other
people find it motivating. If you are convinced that your library is
on the right track, be prepared to repeat the above procedure
several times. The last draft of the Serialization library is # 20.
About half of these revisions were posted to Boost and actually
subjected to the process described above. The serialization library
is larger than most and I really was not prepared for this process
the way you will be after reading this paper. Hopefully, my
experience qualifies as a worst case scenario.

5. FORMAL REVIEW
Formal review is the heart of the Boost process. It is fiendishly
clever and very effective. It can be summarized as follows:

• Formal review is requested by submitter

• If the request is seconded by one or more Boosters, a
limited time review period (usually a week or two) is
scheduled and a review manager is assigned.

• Issues such as library design, utility, code quality,
documentation, and others are discussed on the list.

• During the review period, interested parties post
recommendations and supporting arguments for
acceptance or rejection of the library into Boost.

• After close of the review period, the review manager
makes the decision as to whether or not the library will
be accepted, and if so, what changes should be made.
His report includes a summary of the issues raised and
his assessment of the consensus.

A particularly intriguing aspect of this process (to me) was the
lack of pretense to any sort of democratic idea. Although reviews
often “Vote” for acceptance or rejection, it is not a question of
number of votes. The review manager makes the final decision
after reviewing all the posted comments. It is much more akin to a
court decision rather than an election.

The fact that this is a formal review will motivate a number of
people who did not have time to review the library before to now
take a closer look. Having updated your library in accordance
with your preliminary feedback will pay big dividends here. Less
time will be spent on mostly settled issues so you will be able to
spend time on any new things that pop up.

The formal review process itself can be pretty intense for the
library submitter. The limited time frame available focuses

everyone’s attention on the review. Many new points will be
brought up and you will have to consider them all in a short time.
The process sounds more suspenseful than it really is. By the
time this is done, it is usually obvious whether or not the
submission will be accepted.

If your library is not accepted, the review manager’s report will
detail the reasons why along with the final decision “The X
library is not accepted into Boost at this time”. Of course such a
decision is a huge disappointment for the submitter. Though it
has happened that a library which was deemed unacceptable was
reviewed a second time, it has happened only once. The Boost
Serialization library is the holder of that dubious distinction. A
better strategy is to be ready the first time by following the advice
given here.

6. SO YOU THINK YOU'RE DONE?
If your library is accepted, it is usually subject to some conditions.
Boost does not require the library to be totally complete to be
accepted. Accepting only libraries that are ready for release
would place an unreasonable burden upon potential contributors.
Your next task is to make all changes that the review manager has
determined are necessary. This can take quite a while.

Once all the changes are made, you can concentrate on other
portability to other platforms. Boost emphasizes that support for
older non-conforming compilers is not a requirement. Whether
you choose to implement conformance workarounds may depend
on the nature of your library. If your library is the next greatest
template metaprogamming wizardry, it may not make sense to try
to support older compilers. If it is a more prosaic application such
as a TCP/IP stack, it might be more appropriate to support a wider
range of compilers. It is up to you.

Buiding and testing with other compilers, libraries and platforms
can be more difficult that one might think. First of all, if you have
made it this far, your library may have lot more functionality and
generality than it started with. You will start to gain a better
appreciation for the subtleties of the C++ language and the
variations among implementations of the language. Eventually
you will add your code to the main Boost CVS tree and start
testing on other platforms. Boost runs all the tests for all the
libraries approximately every 24 hours. The slow turn-around can
be infuriating. Fortunately, friendly Booster members interested
in your library will often lend a hand with the compilers, libraries
and platforms that they use.

Eventually, most of the boxes in the test/compiler test matrix
show the tests passing. A few will not pass because one or more
compilers or standard libraries cannot support a particular feature
that your library requires. (e.g., wide character I/O). Some
compiler bugs just cannot be worked around, so some feature of
your library may not be usable with a particular compiler. This
matrix will help library users to determine which features are
available in their development environment.

Is this the end? Not really. Libraries are constantly tested and
new problems emerge as compilers are upgraded. Users report
ever more bugs or ambiguities in documentation. Users post
suggestions for enhancements. Depending on the size of the

library and how widely used it is, it can take a while before things
really taper off.

7. IS IT REALLY WORTH IT?
Submitting a library to Boost and seeing it through can take a lot
of time. It can be frustrating and stressful as well. And for all
this, there is a real possibility that the effort will end in failure.
The question has to be asked – is it worth the effort?

Regardless of whether or not your library is accepted, you will
benefit from having gone through it.

You will find that there is a lot more to C++ than you thought
there was. As a library writer you will likely become a lot more
familiar with the details of templates, STL, streams, etc. than you
do as an applications developer.

You will be exposed to better methodology. The Zen of Boost
might be summarized as

• Design, code, tests, and documentation are developed in
parallel rather than one after the other.

• Development is incremental and iterative. During the
course of development, one always has a complete
working package.

• Subject code, tests, and documentation to constant
review and criticism of one’s peers

• Factor out common code into libraries of orthogonal
functionality.

• Test each library and each library feature independently.

• Document libraries separately.

• Composing programs from working, tested, documented
components increases the chances of producing flexible,
reliable programs in the shortest time.

Most organizations believe that they are using the best practices to
produce software. Most of these organizations are wrong. Going
through this process – even for a small library – will make it
apparent what it takes to do good work and why more of it is not
being done.

You will spend time interacting with smart, mostly agreeable
people who really love what you – and they – do.

Is this “worth it”? You decide.

8. ACKNOWLEDGEMENTS
David Abrahams and other Boost members critiqued this paper.

9. REFERENCES
[1] www.boost.org

[2] http://www.boost.org/LICENSE_1_0.txt

[3] http://www.Boost.org/more/discussion_policy.htm

[4] http://www.boost.org/libs/libraries.htm

[5] http://www.boost.org/libs/libraries.htm#Correctness

xpressive: Dual-Mode DSEL Library Design

Eric Niebler
Boost Consulting

1608 E Republican St. 202
Seattle, WA 98112

eric@boost-consulting.com

Abstract

A Domain-Specific Embedded Language (DSEL) is a miniature
language-within-a-language for solving problems in a particular
domain. This paper presents techniques for increasing the power
and flexibility of DSELs in C++ by unifying two complemen-
tary designs: early-bound (compile-time) and late-bound (runtime).
Late-bound DSELs often have string-based interfaces, whereas ex-
pression templates are usually the tool of choice for early-bound
DSELs. xpressive, a new regular expression library, fuses these two
approaches. This fusion, providing both a runtime and a compile-
time interface, has advantages over either approach alone.The pre-
sented unified design uses the same back end for both styles of
binding, maximizing code reuse without sacrificing performance.
This paper covers the design of xpressive and the advantagesof its
dual-mode approach.

1 Introduction

Domain-Specific Embedded Languages raise the level of abstrac-
tion, allowing programmers to express solutions in a way that nat-
urally suits the domain in which they are working. Examples in-
clude Blitz++ [22] for scientific computing, and Boost.Spirit [8] for
parser generation. These two libraries use a technique known as
expression templates[23] to define an embedded language within
C++. There are advantages to this approach. In particular, expres-
sion template-based DSELs are:

1. Type safe: the rules for legal statements in the embedded lan-
guage are checked by the compiler.

2. Efficient: by delaying evaluation of complicated expressions
until the full expression is available, expression templates
make the job of an optimizing compiler easier.

In a different approach to DSELs, one writes statements in the
domain-specific language as strings to be parsed and interpreted at
runtime. This approach also has advantages. In particular,string-
based DSELs are:

1. Unconstrained: they need not satisfy the rules for legal C++
expressions.

2. Dynamic: statements in the domain-specific language can be
specified at runtime.

A library that provides both a string-based and an expression
template-based interface has the potential to offer the benefits of
both. The design of such a library presents significant implementa-
tion challenges:

1. How to structure the code to get the performance benefits of
early binding while allowing the flexibility of late binding.

2. How to avoid duplication of implementation.

These issues and others are addressed by xpressive, a new regu-
lar expression template library. xpressive allows programmers to
write regular expressions either as strings, expression templates, or
a combination of both.

2 Advantages of a Dual-Mode Interface

The regular expression library recently accepted into Technical Re-
port 1 [18] provides the following interface for constructing a regu-
lar expression object:

// match a date of the form 09/30/2005
regex date = "\\d\\d?/\\d\\d?/\\d\\d(?:\\d\\d)?";

Although more verbose, expression templates guard againstsyntax
errors such as unbalanced parentheses by moving their detection to
compile-time. For example, when written as an expression template
using xpressive, the regular expression above would look like:

sregex date
= _d >> !_d >> ’/’ // match month

_d >> !_d >> ’/’ // match day
_d >> _d >> !(_d >> _d); // match year

In this regex, the primitived serves the same purpose as"\\d" in
TR1 regex; that is, it matches a digit character, and the unary logical
not operator marks a sub-expression as optional.

Programmers can also create named regex objects and treat them
as aliases, embedding them in other regular expressions, asin the
following:

// A line in a log file is a date followed by
// a space, and everything up to the newline.
sregex log = date >> ’ ’ >> +˜set[’\n’];

This regex reuses thedate regex defined above.

Another advantage is that expression templates can call other C++
code. Consider this regex, which only matches valid dates:

sregex date
= (_d >> !_d)[if_is_month()] >> ’/’

(_d >> !_d)[if_is_day()] >> ’/’
(_d >> _d >> !(_d >> _d))[if_is_year()];

105

This regex uses the programmer-defined predicatesif is -
month() , if is day() and if is year() to enforce semantic
constraints on the regular expression.

xpressive also accepts regular expressions as strings. By doing so,
xpressive preserves the benefits of a late-bound interface;in par-
ticular, programmers can use the ECMAScript standard regexsyn-
tax [14], and programs can process arbitrary regular expressions at
runtime.

A regex can be largely fixed at compile-time while part of its be-
havior can be customized at runtime by changing an embedded dy-
namic regex. Since matching a date is locale-dependent, theregular
expression required to match a date might be written as a string and
put in a resource file for easy localization, as in:

// A line in a log file is a date followed by
// a space, and everything up to the newline.
sregex date = sregex::compile(get_date_pattern());
sregex log = date >> ’ ’ >> +˜set[’\n’];

In this case,get date pattern() reads a localized string from a
resource or initialization file. It is “compiled” into a regular expres-
sion that is then embedded in the log file regular expression.

3 Design and Implementation

The core of xpressive is modular, connecting its componentsat
compile-time to use static dispatch, or at runtime to use dynamic
dispatch. Statically-bound heterogeneous data structures stand in
for their dynamically-bound counterparts, and iterative runtime al-
gorithms have recursive variants that operate on the heterogeneous
data structures.

xpressive avoids code duplication by isolating the core function-
ality in a Matcher concept and defining two Scaffolds: one for
binding sequences of Matchers statically and the other dynami-
cally. The decoupling of the Matcher and Scaffold concepts permits
the Matchers to be neutral regarding the binding, whether dynamic
or static [6]. This separation of concerns enables the core pattern
matching functionality to be shared by the two Scaffolds.

3.1 Concepts

Matchers accept a match context (which, among other things,con-
tains the iterators designating the sequence being searched) and a
tail parser. The use of a tail parser to implement exhaustiveback-
tracking recursive descent is described in [12]. The Matcher con-
cept1 looks like this:

template<class X, class Iterator, class Tail>
concept Matcher
{

where BidirectionalIterator<Iterator>,
Scaffold<Tail, Iterator>;

bool X::match(context<Iterator> &,
Tail const &) const;

};

Scaffolds control the policy by which Matchers are bound; there-
fore, they do not need to be passed a tail parser as a Matcher does.

1The syntax used in this paper for concept definitions conforms
to the proposal to add concepts to C++[20].

Scaffolds generally compose a Matcher and a tail parser (which it-
self satisfies the Scaffold concept), and it passes the tail parser to
the Matcher. The Scaffold concept is defined (in part) below:

template<class X, class Iterator>
concept Scaffold
{

where BidirectionalIterator<Iterator>;

bool X::match(context<Iterator> &) const;
// ...

};

any matcher is an example of a concrete type that satisfies the
Matcher concept. It matches any one character, like the’.’ meta-
character in Perl.

struct any_matcher {
template<class Iterator, class Tail>
bool match(context<Iterator> & ctx,

Tail const & tail) const {
if(ctx.current == ctx.end)

return false;
++ctx.current;
if(tail.match(ctx))

return true;
--ctx.current;
return false;

}
};

In this code, ctx.current is an iterator pointing to the cur-
rent position in the sequence, andctx.end is the end of the se-
quence. All concrete Matchers are implemented similarly; they
evaluate their match condition, update the match context, invoke
tail.match(ctx) and, if the tail parser fails, backs out changes to
the match context. As we will see, the call totail.match(ctx)
can be dispatched either statically or dynamically.

3.2 Late-Binding with the Dynamic Scaffold

The dynamic Scaffold is built like a singly-linked list of Matchers,
where each Matcher is encapsulated behind a runtime polymorphic
interface. This is essentially a variation of the Interpreter design
pattern [11]. The dynamic Scaffold is implemented in two parts, as
below:

template<class Iterator>
struct matchable {

virtual ˜matchable() {}
virtual bool match(context<Iterator> &)

const = 0;
};

template<class Matcher, class Iterator>
struct dynamic_scaffold : matchable<Iterator> {

Matcher head;
matchable<Iterator> const * tail;

bool match(context<Iterator> & ctx) const {
return head.match(ctx, *tail);

}
// ...

};

106

The parameterMatcher to thedynamic scaffold template is as-
sumed to satisfy the Matcher concept. As such, it has amatch()
member function that accepts acontext<> and a tail parser. In
this case, the tail parser passed to the Matcher is amatchable<
Iterator > , which satisfies the Scaffold concept. Looking back
at the implementation ofany matcher::match() , we can see
that when it is invoked from adynamic scaffold , the call to
tail.match(ctx) will be dispatched dynamically.

3.3 Early-Binding with the Static Scaffold

The static Scaffold is also built like a singly-linked list,except that
it is heterogeneous and statically-bound [5]. Its type is calculated
at compile-time from the expression template. The static Scaffold
is implemented as follows:

template<class Matcher, class Tail>
struct static_scaffold {

Matcher head;
Tail tail;

template<class Iterator>
bool match(context<Iterator> & ctx) const {

return head.match(ctx, tail);
}
// ...

};

The only difference between thestatic scaffold and the
dynamic scaffold is that thestatic scaffold knows the ex-
act type of the tail parser. Looking again at the implementation
of any matcher::match() , we can see that when it is invoked
from a static scaffold , the call totail.match(ctx) will be
dispatched statically.

3.4 Handling Branches and Loops

The picture painted so far is obviously simplistic. A singly-linked
list of Matchers is only sufficient for handling regular expressions
that do not have branches (alternation) and loops (quantification,
such as the Kleene star [13]). Loops introduce cycles into our data
structure. It turns out that dealing with cycles is one of themost
challenging problems when moving from a runtime polymorphic
data structure to a statically-bound, heterogeneous data structure.
In the compile-time world, such cyclic data structures leadto cy-
cles in the type system, which are forbidden. (Consider the thorny
infinite regress problem of trying to declare astd::pair<First,
Second> whereSecond is a pointer to the wholestd::pair struc-
ture.) xpressive uses a general technique for breaking cycles in the
type system while preserving the cyclic flow of control. The tech-
nique, described below, uses a form of type erasure [19] thatdoes
not incur the performance overhead of an indirection.

Consider the static regular expression+(expr) , which matches
expr one or more times, whereexpr is some regular expression.
A simple approach might be to terminateexpr with a special loop-
end Matcher which, when wrapped in astatic scaffold , expr
can invoke as a tail parser. This loop-end Matcher would needto
store a pointer toexpr so it can jump back to the start of the loop.
We might naively implementloop end matcher as follows:

// BUGBUG this doesn’t work! Why?
template<class Loop>
struct loop_end_matcher {

Loop const *loop; // ptr to loop top

template<class Iterator, class Tail>
bool match(context<Iterator> & ctx,

Tail const & tail) const {
if(loop->match(ctx))

return true;
return tail.match(ctx);

}
};

Unfortunately, this doesn’t work. The problem becomes obvious
once we try to write down the type of the Scaffold for the regex
+(.) :

static_scaffold<
any_matcher,
static_scaffold<

loop_end_matcher< /* What goes here? */ >
// ...

loop end matcher needs to store a pointer to the top of the loop,
but its type depends on the type of theloop end matcher – a cycle
in the type system! This naive design cannot be made to work.

We notice that we can break the cycle if we move the param-
eterization from the loop-end Matcher’stype to the Matcher’s
match() member function. Instead of storing theloop pointer
as a data member,loop end matcher:: match() can accept
the pointer as a parameter, where its type will be deduced. This
neatly side-steps the infinite regress problem of having to de-
clare a self-referential type. In the general case, we wouldneed
a stack of such back-pointers to handle nested repeats such as
+(+(expr)) . For dynamically-bound regexes, astd::stack<
matchable< Iterator > const *> would serve, and for static
regexes, the stack would be heterogeneous and statically bound. In
addition, rather than adding an extra parameter to the Matcher’s
match() function, the stack of back-pointers could be bound to-
gether with the tail parser.

Although theoretically sound, this approach hardly meets our re-
quirements for a zero-overhead solution. Certainly, maintaining
a std::stack<> in the dynamic case will slow things down, and
even in the static case, a heterogeneous stack of back-pointers will
take up valuable real estate on the program stack. We need a hybrid
approach.

It is only by separating the runtime data (the value of the pointer)
from the compile-time data (the pointer’s type) that we can solve
this problem efficiently. The values of the back-pointers are
stripped from the stack, which now becomes no more than a type-
list [3]. The typelist is used to decorate the type of the tailparser,
which gets passed to the Matchers in the usual way. The values
of the pointers are stored in a type-erased form within the Matchers
that need them; avoid* is sufficient. Essentially, it is as if we broke
the cycle by parameterizingloop end matcher defined above on
void instead of on the real type of the loop. To call through a
back-pointer, a Matcher casts itsvoid* to the type at the head of
the typelist passed in, completing the cycle just in time, and calls
through it. The result is a general, zero- overhead mechanism to
preserve the cyclic flow of control in a data structure that, from the
type system’s perspective, is acyclic.

107

3.5 Maintaining the Typelist

Expressing our solution in code is straightforward. Since we will
will be maintaining a stack of types during matching, we mustex-
tend the Scaffold concept with stack operations. Our new Scaffold
concept looks like this:

template<class X, class Iterator>
concept Scaffold {

where BidirectionalIterator<Iterator>;

bool X::match(context<Iterator> &) const;

template<class Top>
where { Scaffold<Top, Iterator> }
bool X::push_match(context<Iterator> &) const;

bool X::pop_match(context<Iterator> &,
void const *) const;

bool X::top_match(context<Iterator> &,
void const *) const;

bool X::skip_match(context<Iterator> &) const;
};

The semantics of the new member functions are defined below:

push match(): PushTop onto the head of the typelist and in-
vokematch() on *this .

pop match(): Let Top be the type at the head of the typelist and
top be the result of casting thevoid const* argument toTop
const * . RemoveTop from the head of the typelist, and call
match() on top .

top match(): Let Top be the type at the head of the typelist and
top be the result of casting thevoid const* argument toTop
const * . Callmatch() on top , leavingTop at the head of the
typelist.

skip match(): Discard the type at the head of the typelist and
call match() on *this .

We show that all branching and looping can be implemented in
terms of these four primitive operations with zero additional over-
head in both the static and dynamic dispatch scenarios.

The implementation of these primitives in the dynamic dispatch
scenario is simplicity itself. Thematchable<> template we saw
earlier can implement these functionsin situ, as follows:

template<class Iterator>
struct matchable {

virtual ˜matchable() {}
virtual bool match(context<Iterator> &)

const = 0;

template<typename Top>
bool push_match(context<Iterator> & ctx)

const {
BOOST_MPL_ASSERT((

tr1::is_same<Top, matchable<Iterator> >));
return this->match(ctx);

}
bool pop_match(context<Iterator> &ctx,

void const *top) const {

return static_cast<matchable<Iterator>
const *>(top)->match(ctx);

}
bool top_match(context<Iterator> & ctx,

void const *top) const {
return static_cast<matchable<Iterator>

const *>(top)->match(ctx);
}
bool skip_match(context<Iterator> & ctx)

const {
return this->match(ctx);

}
};

In the dynamic dispatch scenario, all the back-pointers will have ex-
actly the same type:matchable<Iterator> const * . Therefore,
a typelist is totally superfluous and is eliminated. We can verify
at compile time that no type besidesmatchable< Iterator > is
pushed on the stack using a static assertion inpush match() . (The
flavor of static assertion used above is from the Boost MPL [2].)

Things are more complicated for thestatic scaffold . Imple-
menting the Scaffold concept in a statically-bound data structure
requires a helper class, calledstacked scaffold . Conceptually, a
stacked scaffold is 2-tuple consisting of a tail parser and a type.
The type represents the head of the typelist, and the tail parser can
be either astatic scaffold or astacked scaffold .

Recall that astatic scaffold has a Matcher sub-object called
head and a tail parser calledtail . Whenpush match<Top>() is
called on astatic scaffold , it binds tail andTop into a tem-
porarystacked scaffold object and passes it as the tail parser to
head.match() . On compilers that implement the Empty Base Op-
timization (EBO), we can play a small trick with inheritanceand
static cast to avoid even creating the temporary object, which
saves valuable program stack space2. The code in Appendix A
shows howstatic scaffold and stacked scaffold work to-
gether to satisfy the Scaffold concept with zero runtime overhead.

3.6 Turing Completeness

Loosely speaking, a programming language is Turing complete if it
can do sequence, branch and repetition [25]. Therefore, if we show
that the Scaffold concept is sufficient to implement these three op-
erations, we have shown that it can be used to perform any calcu-
lation. It is trivial to show that the Scaffold supports sequencing;
callingmatch() on a Scaffold causes execution to be passed in turn
to the Scaffold’s tail parser, and so on until the end of the sequence
is reached. Branching and repetition are more interesting.

Consider the regular expression(a|b)c , which matchesa or b,
followed by c , wherea, b, andc are themselves regular expres-
sions. Figure 1 shows how we can represent this structure with the
Matcher and Scaffold concepts. The arrows represent pointers to
the polymorphic basematchable< Iterator > when bound dy-
namically, and aggregation when bound statically. The rectangles
represent special Matchers that control the flow of execution. There
is analternate matcher which points to or aggregates the Scaf-
folds representing the regular expressionsa andb. Botha andb are

2We makestacked scaffold inherit from the tail parser it
wraps. Sincestacked scaffold is empty otherwise, it will be
layout-compatible with its tail parser if the compiler doesEBO, so
a cast is sufficient.

108

Figure 1. Data structure representing the regular expression
(a|b)c.

terminated with analternate end matcher . Flow control pro-
ceeds as follows:

1. alternate matcher is invoked withc as a tail parser.

2. alternate matcher callss a.push match<C>(...) where
s a is the Scaffold representing the regular expressiona, andC
is the type of the Scaffold representing the regular expression
c . This causesa to execute and pushes the typeC to the head
of the typelist.

3. If a succeeds, execution reaches itsalternate end -
matcher , which stores avoid* to c . alternate end -
matcher invokespop match(...) on the tail parser, passing
thevoid* . This causes thevoid* to be cast to aC*, removes
C from the front of the typelist, and executesc .

4. If a fails, or if the failure of c causesa to backtrack,
alternate matcher callss b.push match<C>(...) where
s b is the Scaffold representing the regular expressionb, and
the process repeats.

Essentially, alternate matcher is an n-way branch. The
push match() and pop match() primitive operations give us a
convenient way to express continuous control flow across a discon-
tinuous data structure.

Looping is handled in a way similar to branching. We have al-
ready suggested the existence of a special loop-end Matcher. We
will also need a loop-begin Matcher. When repeating a regular ex-
pression one or more times, the Scaffold representing it is book-
ended with the loop-begin and loop-end Matchers. The loop-begin
Matcher simply executestail.push match< Tail (ctx) to exe-
cute its tail parser and push its type onto the typelist. The loop-end
Matcher will try to calltail.top match(ctx, pv) to jump back
to the start of the loop (wherepv is a void* pointing to tail). If
that returns false, it will returntail.skip match(ctx) to break
out of the loop and pass execution on to the rest of the regularex-
pression. The code is below:

struct loop_matcher {
template<class Iterator, class Tail>
bool match(context<Iterator> & ctx,

Tail const & tail) const {

return tail.template push_match<Tail>(ctx);
}

};

struct loop_end_matcher {
void const * pv; // points to top of loop

template<class Iterator, class Tail>
bool match(context<Iterator> & ctx,

Tail const & tail) const {
if(tail.top_match(ctx, pv))

return true;
return tail.skip_match(ctx);

}
};

We have not yet succeeded in building a Kleene star. The looping
mechanism described above must execute the loop body at least
once, and the Kleene star repeats an expressionzeroor more times.
However, we can build a Kleene star out of theloop matcher and
the alternate matcher already described. We take the regex to
repeat, book-ended with begin- and end-loop Matchers. Thenwe
usealternate matcher to make it alternate with anepsilon -
matcher , which is a null-transition. In other words, we transform
*(expr) to (+(expr) | epsilon) . The epsilon branch gives us
a way to skip over the loop body entirely if it fails to match atleast
once.

Since we can express sequencing, branching and repetition with the
Scaffold and Matcher concepts, it follows that they can be used to
express domain-specific embedded languages within C++ thatare
Turing complete, and which can be bound statically or dynamically
in a way that incurs zero extra runtime overhead.

4 Empirical Results

We analyze the size and speed trade-offs of static and dynamic reg-
ular expressions. As static regular expressions have no virtual func-
tion calls or other indirections, we expect them to perform better
than their interpreted dynamic brethren. This assumes a compiler
smart enough to optimize the code generated by the expression tem-
plate. It also fails to take cache and locality effects into account. As
always, there is no substitute for an empirical test.

Performance Benchmark Method

Appendix 2 shows the comparative performance of static and dy-
namic xpressive. The test is broken into two scenarios: short
matches and long searches. The regexes for the short matchesare
taken from The Regular Expression Library [1], a repositoryof
practical, real-world regexes, so the hope is that the results are fairly
representative. For the long searches, the time to find all matches in
a long English test is measured. The text is the complete works of
Mark Twain [21], and the patterns are taken from the performance
suite of the Boost.Regex library [17]. To account for cache effects,
each test is run ten times in succession, and the smallest time is
reported for each.

Performance Benchmark Results

The results of the performance test are that for Visual C++ 7.1,
static regexes are consistently faster than dynamic, by 13%on av-
erage. On GCC 4.0, results were mixed, with dynamic xpressive
occasionally and inexplicably out-performing static xpressive. We

109

have no satisfactory explanation for these outlying data points, but
we note that on the whole, static xpressive performs better.

We also analyze the effect of static regexes on executable size. We
might expect executable size to drop when using expression tem-
plates because code is only generated for the DSEL features that
are actually used. In contrast, a string-based DSEL, since it does
not know at compile time which features are used, must gener-
ate code for all of them. In addition, when not using the string-
based interface, the parser which turns a string into a regexis not
needed. However, even though we only pay for the features that are
used, with expression templates we must pay for them repeatedly.
For example, using a look-ahead assertion in three different con-
texts will generate the look-ahead code three times with expression
templates, but only once for a string-based DSEL. Also, the meta-
programming required to manipulate the expression template takes
up space in the executable.

Executable Size Benchmark Method

Several different regular expressions are taken from The Regular
Expression Library [1] and translated into static regexes.They are
added one at a time to an otherwise empty source file. With each
additional static regex, the file is compiled in release configura-
tion, and the size of the resulting executable is noted. The same
is done for dynamic regexes. The results are tabulated in Appendix
3. Correlating the number of static regexes to executable size is
naive, since complicated regexes are likely to generate more exe-
cutable code than simple ones. As a result, the table in Appendix
3 correlates expression template complexity versus executable size,
where the expression template complexity is defined as the number
of overloaded operators used in the expression template.

Executable Size Benchmark Results

We find that the executable size scales roughly linearly withthe
total expression template complexity. For dynamic regexes, the ex-
ecutable size is unsurprisingly independent of the number of regu-
lar expressions used. For programs with low expression template
complexity, the executable size with static regexes is considerably
smaller than with dynamic. For example, a program with only one
static regex with a complexity of 12 results in a 57Kb executable,
whereas the equivalent program using a dynamic regex is 156Kb.
The break-even point is at a complexity of around 150. Beyond
that, using dynamic regexes will yield smaller executables.

4.1 Recommendations

The above results can be summarized as follows: when optimiz-
ing for speed, prefer static regexes. If optimizing for size, take
into consideration the complexity of the regular expressions. If the
number of expression template operators is below a certain thresh-
old (empirically determined to be around 150), use static regexes.
As complexity grows beyond that threshold, consider switching to
dynamic regexes. Once the ”interpreter tax” has been paid, addi-
tional dynamic regexes are free. For applications that use alarge
number of regexes, a good strategy for managing executable size
would be to use dynamic regexes for the majority, and use static
regexes only where performance is critical.

5 Other Applications

Dual-mode DSEL interfaces have applications outside the domain
of regular expressions. An interesting data point is the Spirit Parser

Framework [8], which is an EBNF parser generator. An early ver-
sion of the library exclusively used a string-based interface, but later
versions switched to using an expression template interface. Joel de
Guzman, Spirit’s author, reports that users occasionally ask for an
optional string-based interface, which de Guzman has considered
adding.

Another domain that might benefit from a dual-mode DSEL is re-
lational query. We imagine a library that accepts SQL queries as
strings or as expression templates. When applied to a relational
database, an expression template query could make it simpler to
bind the results of queries to in-process data. The expression tem-
plate queries could also be applied to strongly-typed in-memory
data, such as STL container-like tables. In that case, the results of
SELECTandFROMoperations could themselves be strongly typed. In
this regard, it would be like the Relational Template Library [24].
Such a dual-mode relational query library might also have the abil-
ity to translate an expression template query into an intermediate
form (possibly string-based) for remote execution by a relational
database.

Finally, we note the current work going on by Joel de Guzman on
a new library called Rave [9], which in his words is ”a lambda
interpreter, which amounts to a late-bound DSEL for Phoenix.”
Phoenix [7] is an expression template-based lambda abstraction for
C++, which is currently a part of Spirit.

6 Related Work

The idea of making the binding between components either dy-
namic or static is not new. Czarnecki and Eisenecker describe how
to use parameterized inheritance to make a class fully statically-
bound, fully dynamically-bound, or a combination of both [6].
xpressive uses a variation of this approach.

The idea of building DSLs out of pluggable components is also
not new. Tools for building such mini-languages abound. Martin
Fowler provides an excellent and informative overview of the state
of the art in what he calls ”language workbenches” in [10].

A variation of the cyclic type dependency problem is addressed by
the Barton-Nackman trick [4]. A technique using template template
parameters to break mutual dependencies between class templates
in certain circumstances is described in [16]. However, neither
technique fully addresses the cyclic type dependency issues of the
sort that can arise in generative programming.

The Boost Lambda Library [15] is another example of an expres-
sion template-based DSEL that is Turing-complete. It provides a
lambda abstraction for C++ with sequencing, branching and loop-
ing constructs, as well as variable assignment. This library does not
have the same problem with cyclic type dependencies becauseits
looping constructs are iterative instead of recursive as with xpres-
sive. The recursion in xpressive is to satisfy the exhaustive back-
tracking requirement, which is implemented with recursivedescent
and tail parsers.

The Phoenix library [7] is another Turing-complete lambda abstrac-
tion for C++ which uses expression templates, but unlike theBoost
Lambda Library, Phoenix allows recursion. Phoenix’s solution for
the cyclic type dependency problem is similar to xpressive’s; how-
ever, it is not zero-overhead. Rather than storing type-erased point-
ers as data members, the pointers are passed as parameters sotheir
types can be deduced. This consumes space on the program stack.

110

We speculate that the extra argument passing may also consume
clock cycles and increase register pressure.

7 Conclusions

Domain-specific embedded languages are a powerful abstraction
tool. By fusing the two common approaches to DSELs in C++,
late-bound and early-bound, we can achieve the benefits of both
without sacrificing performance or flexibility. We present imple-
mentation techniques for developing dual-mode DSEL libraries that
maximize code reuse, and a general technique for breaking cycles
in the type system for cyclic heterogeneous data structures. The
concepts used by xpressive allow for Turing complete DSELs in
C++ that allow either binding style with no extra runtime overhead.

8 Acknowledgements

We would like to thank Joel de Guzman and Rene Rivera, who
proof-read an early draft of this paper.

We would also like to thank Douglas Gregor for reviewing the syn-
tax of the concept definitions in this paper.

9 References

[1] The regular expression library.http://www.regxlib.com .

[2] D. Abrahams and A. Gurtovoy.C++ Template Metaprogram-
ming. Addison-Wesley, 2004.

[3] A. Alexandrescu. Modern C++ Design. Addison-Wesley,
2001.

[4] J. J. Barton and L. R. Nackman.Scientific and Engineering
C++ . Addison-Wesley, 1997.

[5] K. Czarnecki and U. Eisenecker. Metalisp.http://www.
prakinf.tu-ilmenau.de/˜czarn/meta/metalisp.cpp .

[6] K. Czarnecki and U. Eisenecker.Generative Programming.
Addison-Wesley, 2000.

[7] J. de Guzman. Boost.phoenix. http://spirit.
sourceforge.net .

[8] J. de Guzman. The spirit parser framework.http://spirit.
sourceforge.net .

[9] J. de Guzman, 2005. private communication.

[10] M. Fowler. Language workbenches: The killer-app for do-
main specific languages.http://www.martinfowler.com/
articles/languageWorkbench.html .

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns. Addison-Wesley Professional, 1995.

[12] D. Grune and C. J. Jacobs.Parsing Techniques - A Practical
Guide. Ellis Horwood, 1990.

[13] J. E. Hopcroft and J. D. Ullman.Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley,
1979.

[14] E. International. Standard ECMA-262: ECMAScript Lan-
guage Specification. ECMA International, 1999.

[15] J. Jarvi and G. Powell. The boost lambda library.http://
boost.org/doc/html/lambda.html .

[16] L. Kettner. Comp 290-001: Algorithm library design: Lecture
notes. http://photon.poly.edu/˜hbr/cs903-F00/lib_
design/notes/advanced.html .

[17] J. Maddock. Boost.regex. http://boost.org/libs/
regex/doc/index.html .

[18] J. Maddock. A proposal to add regular expressions to the
standard library.http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2003/n1429.htm .

[19] B. C. Pierce.Types and Programming Languages. MIT Press,
2002.

[20] J. Siek, D. Gregor, R. Garcia, J. Willcock, J. JŁrvi,
and A. Lumsdaine. Concepts for c++0x. http:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/
2005/n1758.pdf .

[21] M. Twain. The entire project gutenberg works of mark twain.
http://www.gutenberg.org/etext/3200 .

[22] T. Veldhuizen. Blitz++. http://www.oonumerics.org/
blitz/ .

[23] T. Veldhuizen. Expression templates.C++ Report, 7(5):26–
31, 1995.

[24] A. Vertleyb and D. Arapov. Rtl: The relational templateli-
brary. C/C++ Users Journal, March 2004.

[25] Wikipedia. Turing completeness — wikipedia, the free ency-
clopedia, 2005. [Online; accessed 29-September-2005].

A Implementation of the Static Scaffold

The implementation ofstatic scaffold is shown below. It shows
how to achieve statically-bound cyclic control flow in a heteroge-
neous data structure with zero runtime overhead. This implementa-
tion assumes the empty-base optimization as an added optimization
to conserve program stack.

Sincestatic scaffold represents the condition when no types
have been pushed onto the typelist, it need not implement
pop match() , top match() , or skip match() . Calling these
functions on astatic scaffold would be invalid in the same
way that callingpop() on an emptystd::stack<> is invalid.
Also notice thatstacked scaffold does not need to imple-
ment push match() since it will inherit a working version from
static scaffold .

///
// class: stacked_scaffold
// purpose: a 2-tuple of a tail parser and a type
// requires: Top is Scaffold, Tail is Scaffold
// satisfies: Scaffold concept
//
template<class Top, class Tail>
struct stacked_scaffold : Tail {

template<class Iterator>
bool match(context<Iterator> & ctx) const {

return Tail::template push_match<Top>(ctx);
}
template<class Iterator>
bool top_match(context<Iterator> & ctx,

void const * top) const {
return static_cast<Top const *>(top)->

template push_match<Top>(ctx);
}

111

template<class Iterator>
bool pop_match(context<Iterator> & ctx,

void const * top) const {
return static_cast<Top const *>(top)->

match(ctx);
}
template<class Iterator>
bool skip_match(context<Iterator> & ctx) const{

return Top::skip_impl(
static_cast<Tail const &>(*this), ctx);

}

template<class Tail, class Iterator>
static bool skip_impl(Tail const & tail,

context<Iterator> & ctx) {
return tail.template push_match<Top>(ctx);

}
};

///
// function: decorate_scaffold
// purpose: decorates the type of a tail parser
// with a type representing the top of the
// scaffold stack
// requires: Tail is a Scaffold
// assumes: the empty-base optimization
//
template<class Top, class Tail>
inline stacked_scaffold<Top, Tail> const &
decorate_scaffold(Tail const & tail) {

return static_cast<
stacked_scaffold<Top, Tail> const &>(tail);

}

///
// class: static_scaffold
// purpose: binds a Matcher to a tail parser
// requires: Tail is a Scaffold
// satisfies: Scaffold concept (together with
// stacked_scaffold)
//
template<class Matcher, class Tail>
struct static_scaffold {

Matcher head;
Tail tail;

template<class Iterator>
bool match(context<Iterator> & ctx) const {

return head.match(ctx, tail);
}
template<class Top, class Iterator>
bool push_match(context<Iterator> & ctx) const{

return head.match(ctx,
decorate_scaffold<Top>(tail));

}

template<class Tail, class Iterator>
static bool skip_impl(Tail const & tail,

context<Iterator> & ctx) {
return tail.match(ctx);

}
};

B Performance Benchmark

We analyze the relative performance of static and dynamic xpres-
sive. The objective is to measure the cost of interpretationfor dy-
namically bound regular expressions, and determine if the extra ef-
fort of authoring static regular expressions is worthwhile.

The tests were carried out on two different compiler/platform com-
binations: Microsoft Visual C++ 7.1 on Windows and GCC 4.0
on Linux. Two different scenarios are tested: (1) matching ashort
string against a regular expression, and (2) finding all matching sub-
strings in a long Engligh text. The text is the complete worksof
Mark Twain [21], which is approximately 15Mb long. For all tests,
the search is repeated in a loop until at least 0.5s has elapsed. The
time to complete the search is taken to be the total time elapsed di-
vided by the number of times the loop was executed. This process
is repeated 10 times and the lowest number is reported. Each table
of results has the actual time for both static and dynamic xpressive.
It also has the normalized time, which is the actual time divided by
whichever of the two times was lower. (Therefore, the best normal-
ized time is 1.)

Table 1 shows the results of performing various short matches us-
ing the Visual C++ compiler. The regular expressions are from an
online repository of useful regexes [1], so we have reason tobe-
lieve they are fairly representative of how people actuallyuse reg-
ular expressions. In this test, we can clearly see static xpressive
consistently outperforming dynamic xpressive. It is important to
note that for both static and dynamix xpressive, the code execut-
ing is the same, the only difference being whether the Matchers are
bound statically or dynamically. Therefore, the performance differ-
ence is a measure of the virtual function call overhead, lostinlining
opportunities and worse locality of reference.

Table 2 shows the results of performing repeated searches ina long
English text. In several cases, dynamic xpressive is just asfast as
static xpressive. For those regexes, xpressive has found anopti-
mization that results in an algorithmic improvement. The strength
of the optimization drowns out the comparativly small difference
between static and dynamic dispatch. In the absense of clever op-
timizations, however, static xpressive is again faster than dynamic,
by as much as 30%.

Tables 3 and 4 show the results of the same tests as 1 and 2, run
this time on Linux after compiling with GCC 4.0. The results are
quite erratic. Although static xpressive usually beats dynamic by
a comfortable margin, Table 3 holds a few surprises. For some
patterns, when matching against short strings, dynamic xpressive
executes faster by as much as 30%. We have no satisfactory expla-
nation for these surprising results. Possible explinations include a
clever compiler optimization, opportunistic cache effects, or a bug
in xpressive, the test harness or the compiler. Further investigation
is required.

C Executable Size Benchmark

Table 5 compares executable size for programs using static and dy-
namic regular expressions. The first column is the number of static
regexes in the program. The second column is the total expression
template complexity of the program, where expression template
complexity is the number of overloaded operators used. The third
column is the size of the resulting executable in bytes. The fourth
column is the size of the same program using dynamic regexes.The
compiler used is Visual C++ 7.1. The executable is compiled in re-

112

lease configuration.

We can see from Table 5 that for programs that use regular expres-
sions sparingly, using static regexes can greatly save space in the re-
sulting executable. However, the executable size grows roughly lin-
early with the number and complexity of the static regexes. Eventu-
ally, at an expression template complexity of about 150, a threshold
is passed and dynamic xpressive yields smaller executables.

113

Table 1. Performance of Short Matches on Visual C++ 7.1
Static xpres-
sive

Dynamic
xpressive Text Regular Expression

1 (3.2e-007s) 1.37 (4.4e-007s)
100- this is a line of ftp response
which contains a message string ˆ([0-9]+)(| |$)(.*)$

1 (6.4e-007s) 1.12 (7.15e-007s) 1234-5678-1234-456 ([[:digit:]] {4}[-]) {3}[[:digit:]] {3,4 }

1 (9.82e-007s) 1.3 (1.28e-006s) john maddock@compuserve.com
ˆ([a-zA-Z0-9 \-\.]+)@((\[[0-9] {1,3 }\.[0-
9] {1,3 }\.[0-9] {1,3 }\.)|(([a-zA-Z0-9\-]+
\.)+))([a-zA-Z] {2,4 }|[0-9] {1,3 })(\]?)$

1 (8.94e-007s) 1.3 (1.16e-006s) foo12@foo.edu
ˆ([a-zA-Z0-9 \-\.]+)@((\[[0-9] {1,3 }\.[0-
9] {1,3 }\.[0-9] {1,3 }\.)|(([a-zA-Z0-9\-]+
\.)+))([a-zA-Z] {2,4 }|[0-9] {1,3 })(\]?)$

1 (9.09e-007s) 1.28 (1.16e-006s) bob.smith@foo.tv
ˆ([a-zA-Z0-9 \-\.]+)@((\[[0-9] {1,3 }\.[0-
9] {1,3 }\.[0-9] {1,3 }\.)|(([a-zA-Z0-9\-]+
\.)+))([a-zA-Z] {2,4 }|[0-9] {1,3 })(\]?)$

1 (3.06e-007s) 1.07 (3.28e-007s) EH10 2QQ ˆ[a-zA-Z] {1,2 }[0-9][0-9A-Za-z] {0,1 }
{0,1 }[0-9][A-Za-z] {2}$

1 (3.13e-007s) 1.09 (3.42e-007s) G1 1AA ˆ[a-zA-Z] {1,2 }[0-9][0-9A-Za-z] {0,1 }
{0,1 }[0-9][A-Za-z] {2}$

1 (3.2e-007s) 1.09 (3.5e-007s) SW1 1ZZ ˆ[a-zA-Z] {1,2 }[0-9][0-9A-Za-z] {0,1 }
{0,1 }[0-9][A-Za-z] {2}$

1 (2.68e-007s) 1.22 (3.28e-007s) 04/01/2001 ˆ[[:digit:]] {1,2 }/[[:digit:]] {1,2 }/
[[:digit:]] {4}$

1 (2.76e-007s) 1.16 (3.2e-007s) 12/12/2001 ˆ[[:digit:]] {1,2 }/[[:digit:]] {1,2 }/
[[:digit:]] {4}$

1 (2.98e-007s) 1.03 (3.06e-007s) 123 ˆ[-+]?[[:digit:]]*\.?[[:digit:]]*$
1 (3.2e-007s) 1.12 (3.58e-007s) 3.14159 ˆ[-+]?[[:digit:]]*\.?[[:digit:]]*$
1 (3.28e-007s) 1.11 (3.65e-007s) -3.14159 ˆ[-+]?[[:digit:]]*\.?[[:digit:]]*$

Table 2. Performance of Long Searches on Visual C++ 7.1
Static xpressive Dynamic xpressive Regular Expression
1 (0.019s) 1 (0.019s) Twain
1 (0.0176s) 1 (0.0176s) Huck[[:alpha:]]+
1 (1.78s) 1.1 (1.95s) [[:alpha:]]+ing
1 (0.344s) 1.32 (0.453s) ˆ[ˆ]*?Twain
1 (0.0576s) 1.05 (0.0606s) Tom|Sawyer|Huckleberry|Finn

1 (0.164s) 1.16 (0.191s) (Tom|Sawyer|Huckleberry|Finn). {0,30 }river|
river. {0,30 }(Tom|Sawyer|Huckleberry|Finn)

114

Table 3. Performance of Short Matches on GCC 4.0
Static xpres-
sive

Dynamic
xpressive Text Regular Expression

1 (3.29e-07s) 1.35 (4.43e-07s)
100- this is a line of ftp response
which contains a message string ˆ([0-9]+)(| |$)(.*)$

1.3 (6.96e-07s) 1 (5.34e-07s) 1234-5678-1234-456 ([[:digit:]] {4}[-]) {3}[[:digit:]] {3,4 }

1 (8.11e-07s) 1.41 (1.14e-06s) john maddock@compuserve.com
ˆ([a-zA-Z0-9 \-\.]+)@((\[[0-9] {1,3 }\.[0-
9] {1,3 }\.[0-9] {1,3 }\.)|(([a-zA-Z0-9\-]+
\.)+))([a-zA-Z] {2,4 }|[0-9] {1,3 })(\]?)$

1 (6.96e-07s) 1.56 (1.09e-06s) foo12@foo.edu
ˆ([a-zA-Z0-9 \-\.]+)@((\[[0-9] {1,3 }\.[0-
9] {1,3 }\.[0-9] {1,3 }\.)|(([a-zA-Z0-9\-]+
\.)+))([a-zA-Z] {2,4 }|[0-9] {1,3 })(\]?)$

1 (7.15e-07s) 1.47 (1.05e-06s) bob.smith@foo.tv
ˆ([a-zA-Z0-9 \-\.]+)@((\[[0-9] {1,3 }\.[0-
9] {1,3 }\.[0-9] {1,3 }\.)|(([a-zA-Z0-9\-]+
\.)+))([a-zA-Z] {2,4 }|[0-9] {1,3 })(\]?)$

1 (2.77e-07s) 1.14 (3.15e-07s) EH10 2QQ
ˆ[a-zA-Z] {1,2 }[0-9][0-9A-Za-z] {0,1 }
{0,1 }[0-9][A-Za-z] {2}$

1 (2.77e-07s) 1.16 (3.19e-07s) G1 1AA
ˆ[a-zA-Z] {1,2 }[0-9][0-9A-Za-z] {0,1 }
{0,1 }[0-9][A-Za-z] {2}$

1 (2.81e-07s) 1.12 (3.15e-07s) SW1 1ZZ
ˆ[a-zA-Z] {1,2 }[0-9][0-9A-Za-z] {0,1 }
{0,1 }[0-9][A-Za-z] {2}$

1 (2.91e-07s) 1.08 (3.15e-07s) 04/01/2001
ˆ[[:digit:]] {1,2 }/[[:digit:]] {1,2 }/
[[:digit:]] {4}$

1 (3e-07s) 1.08 (3.24e-07s) 12/12/2001 ˆ[[:digit:]] {1,2 }/[[:digit:]] {1,2 }/
[[:digit:]] {4}$

1.18 (3.15e-07s) 1 (2.67e-07s) 123 ˆ[-+]?[[:digit:]]*\.?[[:digit:]]*$
1.24 (3.43e-07s) 1 (2.77e-07s) 3.14159 ˆ[-+]?[[:digit:]]*\.?[[:digit:]]*$
1.26 (3.43e-07s) 1 (2.72e-07s) -3.14159 ˆ[-+]?[[:digit:]]*\.?[[:digit:]]*$

Table 4. Performance of Long Searches on GCC 4.0
Static xpressive Dynamic xpressive Regular Expression
1 (0.0294s) 1 (0.0294s) Twain
1 (0.0331s) 1 (0.0331s) Huck[[:alpha:]]+
1 (1.16s) 1.1 (1.28s) [[:alpha:]]+ing
1 (0.212s) 1.29 (0.275s) ˆ[ˆ]*?Twain
1 (0.0519s) 1.12 (0.0581s) Tom|Sawyer|Huckleberry|Finn

1 (0.13s) 1 (0.13s) (Tom|Sawyer|Huckleberry|Finn). {0,30 }river|
river. {0,30 }(Tom|Sawyer|Huckleberry|Finn)

Table 5. Executable Size
Count of Regexes Expression Template Complexity Size (Static) Size (Dynamic)

1 12 57,344b 155,648b
2 24 65,536b 155,648b
3 68 81,920b 155,648b
4 87 94,208b 155,648b
5 100 102,400b 155,648b
6 115 110,592b 155,648b
7 116 110,592b 155,648b
8 120 122,880b 155,648b
9 123 122,880b 155,648b
10 129 126,976b 155,648b
11 133 139,264b 155,648b
12 149 159,744b 155,648b
13 202 172,032b 155,648b

115

	sevitsky_et_al.pdf
	1. INTRODUCTION
	2. STRUCTURING APPROACH
	2.1 Filtering by Analysis Scenario
	2.2 Grouping Into Hierarchical Diagrams

	3. THE DIARY OF A DATE
	4. TRANFORMATION-BASED METRICS
	5. RELATED WORK
	6. CONCLUSIONS AND DIRECTIONS
	7. ACKNOWLEDGMENTS
	8. REFERENCES

	libcomp.pdf
	Introduction and Overview
	Organization

	Modelling library reuse
	Distribution of programs in a domain
	The entropy parameter H
	Motifs and the AEP

	Libraries maximize entropy
	The Platonic library
	Existence of reuse rates
	Ordering of library components

	Kolmogorov Complexity
	A bound on reuse rates
	Coding of references
	Derivation of reuse rate bound

	Reuse potential
	The uniform case: H=1
	The nonuniform case: 0 < H< 1
	The incompleteness of libraries
	Size of library components.

	Experimental data collection
	Conclusion
	Acknowledgments
	References
	Background
	Asymptotics

